Home
Class 12
MATHS
int(0)^(1)e^(2x)e^(e^(x) dx =)...

`int_(0)^(1)e^(2x)e^(e^(x) ` dx =)

A

`e^(e)(2e-1)`

B

`e^(e)(e-1)`

C

`e^(2e)(e-1)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`I=int_(0)^(1)e^(2x)e^(e^(x))dx`
Let `e^(x)=1`
`rArr" "I=int_(0)^(e)te^(t)dt=(te^(t)-e^(t))_(1)^(e)=e^(e)(e-1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-1)^(1)e^(2x)dx

Evaluate the integral as limit of sum: int_(0)^(1) (e^(2x)-e^(x) +x) dx

int_(0)^(2)e^(x)\ dx

int_(0)^(2) e^(x) dx

int_(0)^(1)(dx)/(e^(x)+e^(-x))

int_(0)^(1)x e^(x^(2)) dx

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to