Home
Class 12
MATHS
Let f(x)=lim( n to oo)(cosx)/(1+(tan^(-1...

Let `f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n))`. Then the value of `int_(o)^(oo)f(x)dx` is equal to

A

`cos (tan 1)`

B

`sin(tan1)`

C

`tan(tan1)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) \) and then compute the integral \( \int_0^\infty f(x) \, dx \). ### Step 1: Evaluate \( f(x) \) We start with the definition of \( f(x) \): \[ f(x) = \lim_{n \to \infty} \frac{\cos x}{1 + (\tan^{-1} x)^n} \] ### Step 2: Analyze the behavior of \( \tan^{-1} x \) - For \( x > 1 \), \( \tan^{-1} x \) approaches \( \frac{\pi}{4} \) (which is a finite value). - For \( x < 1 \), \( \tan^{-1} x \) approaches \( 0 \). ### Step 3: Determine the limit - If \( x > 1 \), then \( (\tan^{-1} x)^n \to \infty \) as \( n \to \infty \). Thus, \( f(x) \) becomes: \[ f(x) = \lim_{n \to \infty} \frac{\cos x}{1 + \infty} = 0 \] - If \( 0 < x < 1 \), then \( \tan^{-1} x \) is a finite value less than \( 1 \), and \( (\tan^{-1} x)^n \to 0 \) as \( n \to \infty \). Thus, \( f(x) \) becomes: \[ f(x) = \frac{\cos x}{1 + 0} = \cos x \] - If \( x = 0 \), \( f(0) = \cos(0) = 1 \). ### Step 4: Combine the results We can summarize: \[ f(x) = \begin{cases} \cos x & \text{if } 0 < x < 1 \\ 0 & \text{if } x \geq 1 \end{cases} \] ### Step 5: Set up the integral Now we compute the integral: \[ \int_0^\infty f(x) \, dx = \int_0^1 \cos x \, dx + \int_1^\infty 0 \, dx \] The second integral is zero, so we only need to evaluate: \[ \int_0^1 \cos x \, dx \] ### Step 6: Evaluate the integral The integral of \( \cos x \) is: \[ \int \cos x \, dx = \sin x \] Thus, \[ \int_0^1 \cos x \, dx = \sin(1) - \sin(0) = \sin(1) - 0 = \sin(1) \] ### Final Answer Therefore, the value of \( \int_0^\infty f(x) \, dx \) is: \[ \sin(1) \]

To solve the problem, we need to evaluate the function \( f(x) \) and then compute the integral \( \int_0^\infty f(x) \, dx \). ### Step 1: Evaluate \( f(x) \) We start with the definition of \( f(x) \): \[ f(x) = \lim_{n \to \infty} \frac{\cos x}{1 + (\tan^{-1} x)^n} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(oo)(dx)/(1+x^(4)) is equal to

Let f(x)= lim_(n->oo)(sinx)^(2n)

The value of lim_(n->oo) n^(1/n)

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

The value of lim_(x->oo)(1+1/x^n)^x,n>0 is

If f(n)=int_(0)^(2015)(e^(x))/(1+x^(n))dx , then find the value of lim_(nto oo)f(n)

Let f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2)) Then the minimum value of f(x) is

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

lim_(n to oo)(int_(1//(n+1))^(1//n)tan^(-1)(nx)dt)/(int_(1//(n+1))^(1//n)sin^(-1)(nx)dx) is equal to

"Let "f(x)=x + (1)/(2x + (1)/(2x + (1)/(2x + .....oo))). Then the value of f(50)cdot f'(50) is -