Home
Class 12
MATHS
lim(trarr0) int(0)^(2pi)(|sin(x+t)-sinx|...

`lim_(trarr0) int_(0)^(2pi)(|sin(x+t)-sinx|)/(|t|)dx` equals

A

2

B

4

C

43469

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \[ \lim_{t \to 0} \int_{0}^{2\pi} \frac{|\sin(x+t) - \sin x|}{|t|} \, dx, \] we can follow these steps: ### Step 1: Rewrite the expression using the sine difference formula. Using the sine difference identity, we have: \[ \sin(x+t) - \sin x = 2 \cos\left(\frac{(x+t) + x}{2}\right) \sin\left(\frac{(x+t) - x}{2}\right) = 2 \cos\left(x + \frac{t}{2}\right) \sin\left(\frac{t}{2}\right). \] Thus, we can rewrite the integral as: \[ \int_{0}^{2\pi} \frac{|\sin(x+t) - \sin x|}{|t|} \, dx = \int_{0}^{2\pi} \frac{2 |\cos(x + \frac{t}{2})| \cdot |\sin(\frac{t}{2})|}{|t|} \, dx. \] ### Step 2: Simplify the expression inside the limit. Now, we can simplify the expression further: \[ \lim_{t \to 0} \int_{0}^{2\pi} \frac{2 |\cos(x + \frac{t}{2})| \cdot |\sin(\frac{t}{2})|}{|t|} \, dx. \] As \( t \to 0 \), we know that \( |\sin(\frac{t}{2})| \approx \frac{t}{2} \) (using the small angle approximation). Therefore, we can substitute this into our integral: \[ \lim_{t \to 0} \int_{0}^{2\pi} \frac{2 |\cos(x + \frac{t}{2})| \cdot \frac{t}{2}}{|t|} \, dx = \lim_{t \to 0} \int_{0}^{2\pi} |\cos(x + \frac{t}{2})| \, dx. \] ### Step 3: Evaluate the limit. As \( t \to 0 \), \( \cos(x + \frac{t}{2}) \) approaches \( \cos x \). Thus, we can evaluate the integral: \[ \int_{0}^{2\pi} |\cos x| \, dx. \] ### Step 4: Calculate the integral of \( |\cos x| \). The function \( |\cos x| \) is symmetric and periodic. We can compute it over one period: \[ \int_{0}^{2\pi} |\cos x| \, dx = 2 \int_{0}^{\pi} \cos x \, dx = 2 \left[ \sin x \right]_{0}^{\pi} = 2(0 - 0) + 2(1 - 0) = 2. \] ### Step 5: Final result. Thus, the limit evaluates to: \[ \lim_{t \to 0} \int_{0}^{2\pi} \frac{|\sin(x+t) - \sin x|}{|t|} \, dx = 4. \] ### Final Answer: \[ \boxed{4}. \]

To solve the limit problem \[ \lim_{t \to 0} \int_{0}^{2\pi} \frac{|\sin(x+t) - \sin x|}{|t|} \, dx, \] we can follow these steps: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(x)/(1+sinx)dx .

If a, b and c are real numbers, then the value of lim_(trarr0) ((1)/(t)int_(0)^(t)(1+asinbx)^(c//x)dx) equals

int_(0)^(pi) [2sin x]dx=

Evaluate int_(0)^(pi)(sin 6x)/(sinx) dx .

int_(0)^(pi) x log sinx dx

int_(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx is equal to

The value of lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx , is

The value of lim_(xto0)(1)/(x) int_(0)^(x)(1+ sin 2t)^(1/t) dt equals :

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

int_(0)^(pi) x log sinx\ dx