Home
Class 12
MATHS
The value of I=int(-1)^(1)(1+x)^(1//2)(1...

The value of `I=int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx` is

A

`pi`

B

`(pi)/(2)`

C

`2pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{3}{2}} \, dx \), we will use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a+b-x) \, dx \] ### Step 1: Set up the integral We start with the integral: \[ I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{3}{2}} \, dx \] ### Step 2: Apply the property of definite integrals Using the property mentioned, we replace \( x \) with \( -x \): \[ I = \int_{-1}^{1} (1 - x)^{\frac{1}{2}} (1 + x)^{\frac{3}{2}} \, dx \] ### Step 3: Write down the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{3}{2}} \, dx \) (Equation 1) 2. \( I = \int_{-1}^{1} (1-x)^{\frac{1}{2}} (1+x)^{\frac{3}{2}} \, dx \) (Equation 2) ### Step 4: Add the two equations Adding both equations gives: \[ 2I = \int_{-1}^{1} \left[ (1+x)^{\frac{1}{2}} (1-x)^{\frac{3}{2}} + (1-x)^{\frac{1}{2}} (1+x)^{\frac{3}{2}} \right] \, dx \] ### Step 5: Factor out common terms We can factor out \( (1+x)^{\frac{1}{2}} (1-x)^{\frac{1}{2}} \): \[ 2I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{1}{2}} \left[ (1-x) + (1+x) \right] \, dx \] ### Step 6: Simplify the expression inside the integral The expression simplifies to: \[ (1-x) + (1+x) = 2 \] Thus, we have: \[ 2I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{1}{2}} \cdot 2 \, dx \] ### Step 7: Simplify further This gives: \[ 2I = 2 \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{1}{2}} \, dx \] ### Step 8: Divide by 2 Dividing both sides by 2, we get: \[ I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{1}{2}} \, dx \] ### Step 9: Change of variables We can use the substitution \( x = \sin(\theta) \), which gives \( dx = \cos(\theta) d\theta \) and changes the limits from \( -1 \) to \( 1 \) (corresponding to \( \theta = -\frac{\pi}{2} \) to \( \frac{\pi}{2} \)): \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1+\sin(\theta))^{\frac{1}{2}} (1-\sin(\theta))^{\frac{1}{2}} \cos(\theta) \, d\theta \] ### Step 10: Evaluate the integral Using the identity \( (1+\sin(\theta))(1-\sin(\theta)) = \cos^2(\theta) \): \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2(\theta) \cos(\theta) \, d\theta \] This simplifies to: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^3(\theta) \, d\theta \] ### Step 11: Solve the integral The integral of \( \cos^3(\theta) \) can be computed using the reduction formula or known results: \[ I = \frac{3\pi}{8} \] ### Final Result Thus, the value of \( I \) is: \[ I = \frac{\pi}{2} \]

To evaluate the integral \( I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{3}{2}} \, dx \), we will use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a+b-x) \, dx \] ### Step 1: Set up the integral We start with the integral: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

int3x^(1//2)(1+x^(3//2))dx

The value of the definite integral int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx equals

The value of int_(-1)^(1)((x^(2)+ sin x)/(1+x^(2)))dx is equal to

The value of int_(0)^(1) (1)/(2x-3)dx is

The value of int_(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

The value of int_(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int_(-1)^(1) cos^(-1)[x^(2)-(1)/(2)]dx , where [.] denotes the greatest integer function , is

The value of int_(-1)^(1) {sqrt(1+x+x^(2))-sqrt(1-x+x^(2))}dx , is

The value of int_(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is____.

The value of int_(1)^(2) (dx)/(x(1+x^(4)) is

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to