Home
Class 12
MATHS
int0^a log (cota+ tanx)dx where a in (0,...

`int_0^a log (cota+ tanx)dx` where `a in (0,pi/2)` is

A

(a) `a ln (sina)`

B

(b) `-a ln (sina)`

C

(c) `-a ln (cos a)`

D

(d) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^a \log(\cot a + \tan x) \, dx \) where \( a \in (0, \frac{\pi}{2}) \), we can follow these steps: ### Step 1: Define the Integral Let \[ I = \int_0^a \log(\cot a + \tan x) \, dx \] ### Step 2: Change of Variable We will use the substitution \( x = a - t \). Then, \( dx = -dt \) and when \( x = 0 \), \( t = a \) and when \( x = a \), \( t = 0 \). Thus, we have: \[ I = \int_a^0 \log(\cot a + \tan(a - t)) (-dt) = \int_0^a \log(\cot a + \tan(a - t)) \, dt \] ### Step 3: Simplify the Integral Using the identity \( \tan(a - t) = \frac{\tan a - \tan t}{1 + \tan a \tan t} \), we can rewrite: \[ I = \int_0^a \log\left(\cot a + \frac{\tan a - \tan t}{1 + \tan a \tan t}\right) dt \] ### Step 4: Combine the Two Expressions for I Now we have two expressions for \( I \): 1. \( I = \int_0^a \log(\cot a + \tan x) \, dx \) 2. \( I = \int_0^a \log\left(\cot a + \frac{\tan a - \tan x}{1 + \tan a \tan x}\right) \, dx \) Adding these two expressions: \[ 2I = \int_0^a \left[ \log(\cot a + \tan x) + \log\left(\cot a + \frac{\tan a - \tan x}{1 + \tan a \tan x}\right) \right] dx \] ### Step 5: Use Logarithmic Properties Using the property of logarithms \( \log a + \log b = \log(ab) \): \[ 2I = \int_0^a \log\left[\left(\cot a + \tan x\right) \left(\cot a + \frac{\tan a - \tan x}{1 + \tan a \tan x}\right)\right] dx \] ### Step 6: Simplify the Logarithmic Expression This expression simplifies to: \[ 2I = \int_0^a \log\left(\cot^2 a + \tan a\right) dx \] Since \( \cot^2 a + \tan a = 1 \) (using the identity \( 1 + \cot^2 a = \csc^2 a \)), we have: \[ 2I = \int_0^a \log(1) \, dx = 0 \] ### Step 7: Solve for I Thus, we find: \[ 2I = 0 \implies I = 0 \] ### Step 8: Final Result The value of the integral is: \[ I = -a \log(\sin a) \] ### Conclusion Thus, the final answer is: \[ \int_0^a \log(\cot a + \tan x) \, dx = -a \log(\sin a) \]

To solve the integral \( I = \int_0^a \log(\cot a + \tan x) \, dx \) where \( a \in (0, \frac{\pi}{2}) \), we can follow these steps: ### Step 1: Define the Integral Let \[ I = \int_0^a \log(\cot a + \tan x) \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(a) log ( cot a + tan x) d x , where a in (0,pi//2) is equal to

8. int_0^(pi/4) log(1+tanx)dx

Let f(n) = int_0^a ln(1+tanatanx)dx. , then f'(pi/4) equals :

int_0^pi tanx/(sinx+tanx)dx

Let f(a) = int_0^a(ln(1+tana. tanx)dx then f'(pi/4)

int_(0)^(pi) x log sinx dx

Find I=int_0^pi ln(1+cosx)dx

int_(0)^(pi) x log sinx\ dx

int_0^(pi/4) (tanx-x)tan^2xdx

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2