Home
Class 12
MATHS
u=int0^(pi/2)cos((2pi)/3sin^2x)dx and v=...

`u=int_0^(pi/2)cos((2pi)/3sin^2x)dx` and `v=int_0^(pi/2) cos(pi/3 sinx) dx`

A

2u = v

B

2u = 3v

C

u = v

D

u = 2v

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integrals \( u \) and \( v \) defined as: \[ u = \int_0^{\frac{\pi}{2}} \cos\left(\frac{2\pi}{3} \sin^2 x\right) dx \] \[ v = \int_0^{\frac{\pi}{2}} \cos\left(\frac{\pi}{3} \sin x\right) dx \] we will follow these steps: ### Step 1: Use the property of definite integrals We can use the property of definite integrals, which states that: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] For \( u \), we apply this property: \[ u = \int_0^{\frac{\pi}{2}} \cos\left(\frac{2\pi}{3} \sin^2 x\right) dx = \int_0^{\frac{\pi}{2}} \cos\left(\frac{2\pi}{3} \cos^2 x\right) dx \] ### Step 2: Add the two expressions for \( u \) Now we can add the two expressions for \( u \): \[ 2u = \int_0^{\frac{\pi}{2}} \cos\left(\frac{2\pi}{3} \sin^2 x\right) dx + \int_0^{\frac{\pi}{2}} \cos\left(\frac{2\pi}{3} \cos^2 x\right) dx \] ### Step 3: Combine the integrals Since both integrals have the same limits, we can combine them: \[ 2u = \int_0^{\frac{\pi}{2}} \left( \cos\left(\frac{2\pi}{3} \sin^2 x\right) + \cos\left(\frac{2\pi}{3} \cos^2 x\right) \right) dx \] ### Step 4: Use the cosine addition formula Using the cosine addition formula, we know that: \[ \cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \] Let \( A = \frac{2\pi}{3} \sin^2 x \) and \( B = \frac{2\pi}{3} \cos^2 x \): \[ 2u = \int_0^{\frac{\pi}{2}} 2 \cos\left(\frac{2\pi}{3} \cdot \frac{1}{2}\right) \cos\left(\frac{2\pi}{3} \cdot \left(\sin^2 x - \cos^2 x\right)\right) dx \] ### Step 5: Simplify the integral Since \( \sin^2 x + \cos^2 x = 1 \), we can simplify: \[ 2u = 2 \cos\left(\frac{\pi}{3}\right) \int_0^{\frac{\pi}{2}} \cos\left(\frac{2\pi}{3} \left(\cos 2x\right)\right) dx \] ### Step 6: Change of variable Let \( t = 2x \), then \( dx = \frac{dt}{2} \): \[ 2u = 2 \cos\left(\frac{\pi}{3}\right) \cdot \frac{1}{2} \int_0^{\pi} \cos\left(\frac{2\pi}{3} \cos t\right) dt \] ### Step 7: Relate \( u \) and \( v \) Notice that \( v \) is defined as: \[ v = \int_0^{\frac{\pi}{2}} \cos\left(\frac{\pi}{3} \sin x\right) dx \] By the earlier steps, we find that: \[ 2u = v \] Thus, we conclude: \[ u = \frac{1}{2} v \] ### Final Result Therefore, the relationship between \( u \) and \( v \) is: \[ u = \frac{1}{2} v \]

To solve the integrals \( u \) and \( v \) defined as: \[ u = \int_0^{\frac{\pi}{2}} \cos\left(\frac{2\pi}{3} \sin^2 x\right) dx \] \[ v = \int_0^{\frac{\pi}{2}} \cos\left(\frac{\pi}{3} \sin x\right) dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

int_0^(pi/2) (dx)/(4+sinx)

int_(0)^(pi//2) cos 3x dx

int_(0)^(pi//2) (1)/(4+3 cos x)dx

int_(0)^(pi) cos 2x . Log (sinx) dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi//2) x sinx cos x dx=?

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx