To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \sin x \sin 2x \sin 3x \sin 4x \, dx \), we can use a symmetry property of definite integrals. Here’s a step-by-step solution:
### Step 1: Use the symmetry property of integrals
We will use the property that states:
\[
\int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx
\]
In our case, \( a = \frac{\pi}{2} \). Therefore, we can rewrite the integral as:
\[
I = \int_{0}^{\frac{\pi}{2}} \sin x \sin 2x \sin 3x \sin 4x \, dx = \int_{0}^{\frac{\pi}{2}} \sin\left(\frac{\pi}{2} - x\right) \sin\left(2\left(\frac{\pi}{2} - x\right)\right) \sin\left(3\left(\frac{\pi}{2} - x\right)\right) \sin\left(4\left(\frac{\pi}{2} - x\right)\right) \, dx
\]
### Step 2: Substitute the sine functions
Using the identity \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \), we can rewrite the integral:
\[
I = \int_{0}^{\frac{\pi}{2}} \cos x \sin(2\left(\frac{\pi}{2} - x\right)) \sin(3\left(\frac{\pi}{2} - x\right)) \sin(4\left(\frac{\pi}{2} - x\right)) \, dx
\]
This simplifies to:
\[
I = \int_{0}^{\frac{\pi}{2}} \cos x \sin(2x) \sin(3x) \sin(4x) \, dx
\]
### Step 3: Add the two integrals
Now we have two expressions for \( I \):
1. \( I = \int_{0}^{\frac{\pi}{2}} \sin x \sin 2x \sin 3x \sin 4x \, dx \)
2. \( I = \int_{0}^{\frac{\pi}{2}} \cos x \sin 2x \sin 3x \sin 4x \, dx \)
Adding these two equations gives:
\[
2I = \int_{0}^{\frac{\pi}{2}} \left( \sin x + \cos x \right) \sin 2x \sin 3x \sin 4x \, dx
\]
### Step 4: Factor out common terms
We can factor out \( \sin 2x \sin 4x \):
\[
2I = \int_{0}^{\frac{\pi}{2}} \sin 2x \sin 4x \left( \sin x + \cos x \right) \sin 3x \, dx
\]
### Step 5: Use product-to-sum identities
Using the identity \( \sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)] \):
\[
\sin 2x \sin 4x = \frac{1}{2} [\cos(2x - 4x) - \cos(2x + 4x)] = \frac{1}{2} [\cos(-2x) - \cos(6x)] = \frac{1}{2} [\cos(2x) - \cos(6x)]
\]
### Step 6: Substitute back into the integral
Now we can substitute back into the integral:
\[
2I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} [\cos(2x) - \cos(6x)] (\sin x + \cos x) \sin 3x \, dx
\]
### Step 7: Evaluate the integral
This integral can be evaluated using standard techniques, but for brevity, we can directly compute the final result. After evaluating, we find:
\[
I = \frac{\pi}{16}
\]
### Final Answer
Thus, the value of the integral is:
\[
\boxed{\frac{\pi}{16}}
\]