Home
Class 12
MATHS
int(1)^(2013)[(x-1)(x-2)...(x-2013)]dx...

`int_(1)^(2013)[(x-1)(x-2)...(x-2013)]dx`

A

`(2013)^(2)`

B

`(2012)(2013)(2014)`

C

`2013!`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
D

`I=int_(1)^(2013)(x-1)(x-2)(x-3)...(x-2013)dx`
Using `int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx`
`int_(1)^(2013)(2013-x)(2012-x)...(1-x)=-I`
`rArr" "2I=0rArr I=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(2) (1)/(x(1+x))dx

int(3x+1)/(2x^(2)+x-1)dx

int(x^(2) +1)/((x+1))dx

Evaluate: int_(-1/2)^(1/2)[((x+1)/(x-1))^2+((x-1)/(x+1))^2-2]^(1/2)dx

int(x^(3)-x^(2)+x-1)/(x-1)dx

(1) int(2x+3)/((x-1)(x-2))dx

(1) int(2x+3)/((x-1)(x-2))dx

int_(0)^(1) (1)/(1+x+2x^(2))dx

Real root of the equation (x-1)^(2013) +(x-2)^ (2013) +(x-3)^ (2013)+……….+(x-2013)^(2013) =0 is a four digit number. Then the sum of the digits is :

int_(0)^(1) (1)/(x^(2)+x+1)dx