Home
Class 12
MATHS
int(-pi//4)^(pi//4) \ (e^x sec^2 \ dx)/(...

`int_(-pi//4)^(pi//4) \ (e^x sec^2 \ dx)/(e^(2x)-1)` is equal to (i)`0` (ii)`2` (iii)`e` (iv)none of these

A

0

B

2

C

e

D

2e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{e^x \sec^2 x}{e^{2x} - 1} \, dx, \] we will check if the integrand is an odd function. An odd function satisfies the property \( f(-x) = -f(x) \). ### Step 1: Define the function Let \[ f(x) = \frac{e^x \sec^2 x}{e^{2x} - 1}. \] ### Step 2: Calculate \( f(-x) \) Now, we compute \( f(-x) \): \[ f(-x) = \frac{e^{-x} \sec^2(-x)}{e^{-2x} - 1}. \] Since \( \sec(-x) = \sec(x) \), we have \( \sec^2(-x) = \sec^2(x) \). Thus, \[ f(-x) = \frac{e^{-x} \sec^2 x}{e^{-2x} - 1}. \] ### Step 3: Simplify \( f(-x) \) Now, we rewrite \( e^{-2x} \) as \( \frac{1}{e^{2x}} \): \[ f(-x) = \frac{e^{-x} \sec^2 x}{\frac{1}{e^{2x}} - 1} = \frac{e^{-x} \sec^2 x \cdot e^{2x}}{1 - e^{2x}} = \frac{e^{x} \sec^2 x}{1 - e^{2x}}. \] ### Step 4: Factor out -1 Notice that \[ 1 - e^{2x} = -(e^{2x} - 1). \] Thus, we can write: \[ f(-x) = -\frac{e^{x} \sec^2 x}{e^{2x} - 1} = -f(x). \] ### Step 5: Conclusion about the function Since \( f(-x) = -f(x) \), \( f(x) \) is an odd function. ### Step 6: Evaluate the integral The integral of an odd function over a symmetric interval around zero is zero: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} f(x) \, dx = 0. \] ### Final Answer Thus, the value of the integral is \[ \boxed{0}. \]

To solve the integral \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{e^x \sec^2 x}{e^{2x} - 1} \, dx, \] we will check if the integrand is an odd function. An odd function satisfies the property \( f(-x) = -f(x) \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is

Evaluate: int_(-pi//4)^(pi//4)(sec^2x)/(1+e^x)dx

Evaluate: int_(-pi//4)^(pi//4)(sec^2x)/(1+e^x)dx

The value of int_(-pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

int_(-pi)^(pi) ( e^(sin x ))/( e^(sinx) + e^(-sinx))dx is equal to

int_(0)^(pi//4) e^(x) (tan x+ sec^(2)x) dx

Evaluate: int_(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

The value of int_(-pi)^(pi)(sqrt2cosx)/(1+e^(x))dx is equal to

int_(0)^(pi//2)(dx)/(1+e^(sqrt(2)cos(x+(pi)/(4)))) is equal to

int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1)dx is equal to