Home
Class 12
MATHS
If int(0)^(4pi)ln|13sinx+3sqrt3cosx|dx=k...

If `int_(0)^(4pi)ln|13sinx+3sqrt3cosx|dx=kpiln7`, then the value of k is

A

2

B

4

C

8

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{4\pi} \ln |13 \sin x + 3\sqrt{3} \cos x| \, dx \) and find the value of \( k \) such that \( I = k \pi \ln 7 \), we will proceed step by step. ### Step 1: Rewrite the integral Let \[ I = \int_0^{4\pi} \ln |13 \sin x + 3\sqrt{3} \cos x| \, dx. \] ### Step 2: Use the properties of the sine and cosine functions Since \( \sin x \) and \( \cos x \) are periodic functions with a period of \( 2\pi \), we can break the integral into two parts: \[ I = \int_0^{2\pi} \ln |13 \sin x + 3\sqrt{3} \cos x| \, dx + \int_{2\pi}^{4\pi} \ln |13 \sin x + 3\sqrt{3} \cos x| \, dx. \] Using the substitution \( x = u + 2\pi \) for the second integral, we have: \[ \int_{2\pi}^{4\pi} \ln |13 \sin x + 3\sqrt{3} \cos x| \, dx = \int_0^{2\pi} \ln |13 \sin(u + 2\pi) + 3\sqrt{3} \cos(u + 2\pi)| \, du = \int_0^{2\pi} \ln |13 \sin u + 3\sqrt{3} \cos u| \, du. \] Thus, \[ I = 2 \int_0^{2\pi} \ln |13 \sin x + 3\sqrt{3} \cos x| \, dx. \] ### Step 3: Simplify the expression inside the logarithm We can express \( 13 \sin x + 3\sqrt{3} \cos x \) in a different form. Let \( r = \sqrt{13^2 + (3\sqrt{3})^2} \): \[ r = \sqrt{169 + 27} = \sqrt{196} = 14. \] Now, we can find \( \theta \) such that: \[ \cos \theta = \frac{13}{14}, \quad \sin \theta = \frac{3\sqrt{3}}{14}. \] Thus, we can rewrite: \[ 13 \sin x + 3\sqrt{3} \cos x = 14 \left( \sin x \cos \theta + \cos x \sin \theta \right) = 14 \sin(x + \theta). \] ### Step 4: Substitute back into the integral Now, we can rewrite the integral: \[ I = 2 \int_0^{2\pi} \ln |14 \sin(x + \theta)| \, dx. \] This can be split into two parts: \[ I = 2 \int_0^{2\pi} \ln 14 \, dx + 2 \int_0^{2\pi} \ln |\sin(x + \theta)| \, dx. \] The first integral evaluates to: \[ 2 \int_0^{2\pi} \ln 14 \, dx = 2 \cdot 2\pi \ln 14 = 4\pi \ln 14. \] ### Step 5: Evaluate the second integral The integral \( \int_0^{2\pi} \ln |\sin(x + \theta)| \, dx \) can be evaluated using the known result: \[ \int_0^{2\pi} \ln |\sin x| \, dx = -2\pi \ln 2. \] Thus, \[ \int_0^{2\pi} \ln |\sin(x + \theta)| \, dx = -2\pi \ln 2. \] So, \[ I = 4\pi \ln 14 + 2(-2\pi \ln 2) = 4\pi \ln 14 - 4\pi \ln 2 = 4\pi (\ln 14 - \ln 2) = 4\pi \ln \frac{14}{2} = 4\pi \ln 7. \] ### Step 6: Relate to the original equation We have found that: \[ I = 4\pi \ln 7. \] Comparing this with the given \( I = k \pi \ln 7 \), we find that: \[ k = 4. \] ### Final Answer Thus, the value of \( k \) is \( \boxed{4} \).

To solve the integral \( I = \int_0^{4\pi} \ln |13 \sin x + 3\sqrt{3} \cos x| \, dx \) and find the value of \( k \) such that \( I = k \pi \ln 7 \), we will proceed step by step. ### Step 1: Rewrite the integral Let \[ I = \int_0^{4\pi} \ln |13 \sin x + 3\sqrt{3} \cos x| \, dx. \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(4pi)log_(e)|3sinx+3sqrt(3) cos x|dx then the value of I is equal to

int_(0)^(pi) x log sinx dx

int_(0)^(pi) x log sinx\ dx

int_(0)^((14pi)/3) |sinx|dx

If I=int_(0)^(3pi//4) ((1+x)sinx+(1-x)cosx)dx , then the value of (sqrt(2)-1)I is_______

Evaluate int_(0)^(pi//2)|sinx-cosx|dx .

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

If int_(0)^(18pi)[sinx+cosx]dx=-kpi and [.] denotes the greatest integar function, then k is _____.

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx