Home
Class 12
MATHS
if int(log2)^(x) (du)/(e^u-1)^(1/2) =pi/...

if `int_(log2)^(x) (du)/(e^u-1)^(1/2) =pi/6` then `e^x=`

A

1

B

2

C

4

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the definite integral and find the value of \( e^x \). Let's break it down step by step. ### Step 1: Set up the integral We are given the equation: \[ \int_{\log 2}^{x} \frac{du}{(e^u - 1)^{1/2}} = \frac{\pi}{6} \] ### Step 2: Substitute to simplify the integral We will make the substitution: \[ e^u - 1 = t^2 \] This implies: \[ e^u = t^2 + 1 \quad \text{and} \quad du = \frac{2t}{e^u} dt = \frac{2t}{t^2 + 1} dt \] ### Step 3: Change the limits of integration When \( u = \log 2 \): \[ e^{\log 2} - 1 = 2 - 1 = 1 \implies t = 1 \] When \( u = x \): \[ e^x - 1 = t^2 \implies t = \sqrt{e^x - 1} \] ### Step 4: Rewrite the integral Now we can rewrite the integral with the new variable: \[ \int_{1}^{\sqrt{e^x - 1}} \frac{2t}{(t^2 + 1)^{1/2}} dt \] This simplifies to: \[ \int_{1}^{\sqrt{e^x - 1}} 2 \frac{t}{(t^2 + 1)^{1/2}} dt \] ### Step 5: Evaluate the integral The integral \( \int \frac{t}{(t^2 + 1)^{1/2}} dt \) can be evaluated as: \[ \int 2 \frac{t}{(t^2 + 1)^{1/2}} dt = 2 \sqrt{t^2 + 1} \] Thus, we have: \[ 2 \left[ \sqrt{t^2 + 1} \right]_{1}^{\sqrt{e^x - 1}} = 2 \left( \sqrt{e^x} - \sqrt{2} \right) \] ### Step 6: Set the integral equal to \(\frac{\pi}{6}\) Setting this equal to \(\frac{\pi}{6}\): \[ 2 \left( \sqrt{e^x} - \sqrt{2} \right) = \frac{\pi}{6} \] ### Step 7: Solve for \(\sqrt{e^x}\) Dividing both sides by 2: \[ \sqrt{e^x} - \sqrt{2} = \frac{\pi}{12} \] Adding \(\sqrt{2}\) to both sides: \[ \sqrt{e^x} = \sqrt{2} + \frac{\pi}{12} \] ### Step 8: Square both sides to find \(e^x\) Now squaring both sides: \[ e^x = \left( \sqrt{2} + \frac{\pi}{12} \right)^2 \] ### Step 9: Final expression for \(e^x\) Thus, we have: \[ e^x = 2 + 2 \cdot \sqrt{2} \cdot \frac{\pi}{12} + \left( \frac{\pi}{12} \right)^2 \]

To solve the given problem, we need to evaluate the definite integral and find the value of \( e^x \). Let's break it down step by step. ### Step 1: Set up the integral We are given the equation: \[ \int_{\log 2}^{x} \frac{du}{(e^u - 1)^{1/2}} = \frac{\pi}{6} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(ln2)^x(dt)/(sqrt(e^t-1))=pi/6 , then x=

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

The solution of the equation int_(log_(2))^(x) (1)/(e^(x)-1)dx=log(3)/(2) is given by x=

Ifint_(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equalto" 4 (b) 1n 8 (c) 1n 4 (d) none of these

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

int (1+log_e x)/x dx

Statement-1: If f(x)=int_(1)^(x) (log_(e )t)/(1+t+t^(2))dt , then f(x)=f((1)/(x)) for all x gr 0 . Statement-2:If f(x) =int_(1)^(x) (log_(e )t)/(1+t)dt , then f(x)+f((1)/(x))=((log_(e )x)^(2))/(2)

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

Prove that : int_(0)^(oo) log (x+(1)/(x)). (dx)/(1+x^(2)) = pi log_(e) 2

Let a=int_0^(log2) (2e^(3x)+e^(2x)-1)/(e^(3x)+e^(2x)-e^x+1)dx , then 4e^a =