Home
Class 12
MATHS
The value of int(e)^(pi^(2))[log(pi)x] d...

The value of `int_(e)^(pi^(2))[log_(pi)x] d(log_(e)x) ` (where [.] denotes greatest integer function) is

A

`2log_(e)pi`

B

`log_(e)pi`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{e}^{\pi^2} [\log_{\pi} x] \, d(\log_e x) \), where \([.]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Change of Variable Let \( t = \log_e x \). Then, we have: \[ x = e^t \quad \text{and} \quad d(\log_e x) = dt \] ### Step 2: Change the Limits of Integration When \( x = e \): \[ t = \log_e e = 1 \] When \( x = \pi^2 \): \[ t = \log_e \pi^2 = 2 \log_e \pi \] Thus, the integral becomes: \[ I = \int_{1}^{2 \log_e \pi} [\log_{\pi}(e^t)] \, dt \] ### Step 3: Simplify the Logarithm Using the change of base formula for logarithms, we have: \[ \log_{\pi}(e^t) = t \cdot \log_{\pi} e \] Thus, the integral can be rewritten as: \[ I = \int_{1}^{2 \log_e \pi} [t \cdot \log_{\pi} e] \, dt \] ### Step 4: Determine the Greatest Integer Function Let \( c = \log_{\pi} e \). The integral now is: \[ I = \int_{1}^{2 \log_e \pi} [ct] \, dt \] ### Step 5: Determine the Range of \( ct \) - At \( t = 1 \): \[ c \cdot 1 = \log_{\pi} e \] - At \( t = 2 \log_e \pi \): \[ c \cdot (2 \log_e \pi) = 2 \log_e \pi \cdot \log_{\pi} e = 2 \] ### Step 6: Analyze the Greatest Integer Function The value of \( c \) is positive. Since \( \log_{\pi} e \) is less than 1 (because \( e < \pi \)), we have: \[ \log_{\pi} e < 1 \quad \text{and} \quad 2 \log_{\pi} e < 2 \] Thus, the greatest integer function \( [ct] \) will take the value 0 when \( t \) is between 1 and \( \log_{\pi} e \) and will take the value 1 when \( t \) is between \( \log_{\pi} e \) and \( 2 \log_{\pi} e \). ### Step 7: Split the Integral We can split the integral based on the ranges: \[ I = \int_{1}^{\log_{\pi} e} 0 \, dt + \int_{\log_{\pi} e}^{2 \log_{\pi} e} 1 \, dt \] ### Step 8: Evaluate the Integral The first integral evaluates to 0. The second integral evaluates to: \[ \int_{\log_{\pi} e}^{2 \log_{\pi} e} 1 \, dt = [t]_{\log_{\pi} e}^{2 \log_{\pi} e} = 2 \log_{\pi} e - \log_{\pi} e = \log_{\pi} e \] ### Final Result Thus, the value of the integral is: \[ I = \log_{\pi} e \]

To solve the integral \( I = \int_{e}^{\pi^2} [\log_{\pi} x] \, d(\log_e x) \), where \([.]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Change of Variable Let \( t = \log_e x \). Then, we have: \[ x = e^t \quad \text{and} \quad d(\log_e x) = dt \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

The value of int_(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] denotes greatest integer function , is

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] denotes greatest integer function)

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(sinx)) (where, [.] denotes the greatest integer function)

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function