Home
Class 12
MATHS
The value of (int(0)^(1)(dt)/(sqrt(1-t^(...

The value of `(int_(0)^(1)(dt)/(sqrt(1-t^(4))))/(int_(0)^(1)(1)/(sqrt(1+t^(4)))dt)` is

A

1

B

2

C

`2sqrt3`

D

`sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ I = \frac{\int_{0}^{1} \frac{dt}{\sqrt{1 - t^4}}}{\int_{0}^{1} \frac{dt}{\sqrt{1 + t^4}}} \] Let's denote the numerator as \( I_1 \) and the denominator as \( I_2 \): 1. **Calculate \( I_1 \)**: \[ I_1 = \int_{0}^{1} \frac{dt}{\sqrt{1 - t^4}} \] We will use the substitution \( t = \sin^{1/2}(\theta) \). Then, \( dt = \frac{1}{2} \sin^{-1/2}(\theta) \cos(\theta) d\theta \) and the limits change from \( t=0 \) to \( t=1 \), giving \( \theta=0 \) to \( \theta=\frac{\pi}{2} \). Substituting these into the integral, we get: \[ I_1 = \int_{0}^{\frac{\pi}{2}} \frac{\frac{1}{2} \sin^{-1/2}(\theta) \cos(\theta)}{\sqrt{1 - \sin^2(\theta)}} d\theta \] Using \( \sqrt{1 - \sin^2(\theta)} = \cos(\theta) \): \[ I_1 = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin^{-1/2}(\theta)}{\cos(\theta)} d\theta \] This simplifies to: \[ I_1 = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin(\theta)}} \] 2. **Calculate \( I_2 \)**: \[ I_2 = \int_{0}^{1} \frac{dt}{\sqrt{1 + t^4}} \] We will use the substitution \( t = \tan^{1/2}(\alpha) \). Then, \( dt = \frac{1}{2} \tan^{-1/2}(\alpha) \sec^2(\alpha) d\alpha \) and the limits change from \( t=0 \) to \( t=1 \), giving \( \alpha=0 \) to \( \alpha=\frac{\pi}{4} \). Substituting these into the integral, we get: \[ I_2 = \int_{0}^{\frac{\pi}{4}} \frac{\frac{1}{2} \tan^{-1/2}(\alpha) \sec^2(\alpha)}{\sqrt{1 + \tan^2(\alpha)}} d\alpha \] Using \( \sqrt{1 + \tan^2(\alpha)} = \sec(\alpha) \): \[ I_2 = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \frac{\tan^{-1/2}(\alpha)}{\sec(\alpha)} d\alpha \] This simplifies to: \[ I_2 = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \frac{d\alpha}{\sqrt{\tan(\alpha)}} \] 3. **Combine \( I_1 \) and \( I_2 \)**: Now we can write: \[ I = \frac{I_1}{I_2} = \frac{\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin(\theta)}}}{\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \frac{d\alpha}{\sqrt{\tan(\alpha)}}} \] The \( \frac{1}{2} \) cancels out: \[ I = \frac{\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin(\theta)}}}{\int_{0}^{\frac{\pi}{4}} \frac{d\alpha}{\sqrt{\tan(\alpha)}}} \] 4. **Final Result**: Evaluating the integrals gives: \[ I = \sqrt{2} \] Thus, the value of the given expression is: \[ \boxed{\sqrt{2}} \]

To solve the problem, we need to evaluate the expression: \[ I = \frac{\int_{0}^{1} \frac{dt}{\sqrt{1 - t^4}}}{\int_{0}^{1} \frac{dt}{\sqrt{1 + t^4}}} \] Let's denote the numerator as \( I_1 \) and the denominator as \( I_2 \): ...
Promotional Banner

Similar Questions

Explore conceptually related problems

int(dt)/( sqrt(1-t)-t)

int(1)/(sqrt(t)+1)dt

The value of int_(1//e)^(tanx)(tdt)/(1+t^(2))+int_(1/e)^(cotx)(dt)/(t(1+t^(2))) is equal to

int(1)/(tsqrt(t^(2) -1))dt

int1/(sqrtt(1+t))dt

int(1)/(sqrt(t))dt

Evaluate int_(-oo)^(0)(te^(t))/(sqrt(1-e^(2t)))dt

int(dt)/( sqrt(t-1))

(1)/(3)int(t*dt)/(sqrt(1+t))

(1)/(2)int(dt)/((1+t))