Home
Class 12
MATHS
Let a and b be two positive real numbers...

Let a and b be two positive real numbers. Then the value of `int_(a)^(b)(e^(x//a)-e^(b//x))/(x)dx` is

A

0

B

ab

C

1/ab

D

`e^(ab)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{a}^{b} \frac{e^{\frac{x}{a}} - e^{\frac{b}{x}}}{x} \, dx, \] we will use a substitution method. ### Step 1: Substitution Let us substitute \( x = \frac{ab}{y} \). Then, we need to find \( dx \): \[ dx = -\frac{ab}{y^2} \, dy. \] ### Step 2: Change the limits When \( x = a \), \( y = \frac{ab}{a} = b \) and when \( x = b \), \( y = \frac{ab}{b} = a \). Thus, the limits of integration change from \( a \) to \( b \) to \( b \) to \( a \). ### Step 3: Substitute in the integral Now, substituting \( x \) and \( dx \) into the integral: \[ I = \int_{b}^{a} \frac{e^{\frac{ab/y}{a}} - e^{\frac{b}{ab/y}}}{\frac{ab}{y}} \left(-\frac{ab}{y^2}\right) \, dy. \] This simplifies to: \[ I = \int_{b}^{a} \left( e^{\frac{b}{y}} - e^{\frac{y}{a}} \right) \frac{y}{ab} \left(-\frac{ab}{y^2}\right) \, dy. \] ### Step 4: Simplify the integral This can be simplified to: \[ I = \int_{b}^{a} \left( e^{\frac{b}{y}} - e^{\frac{y}{a}} \right) \left(-\frac{1}{y}\right) \, dy. \] ### Step 5: Change the limits Changing the limits of integration gives: \[ I = -\int_{a}^{b} \left( e^{\frac{b}{y}} - e^{\frac{y}{a}} \right) \frac{1}{y} \, dy. \] ### Step 6: Combine the integrals Now, we have: \[ I = \int_{a}^{b} \frac{e^{\frac{x}{a}} - e^{\frac{b}{x}}}{x} \, dx = -I. \] ### Step 7: Solve for \( I \) Adding \( I \) to both sides gives: \[ 2I = 0 \implies I = 0. \] Thus, the value of the integral is \[ \boxed{0}. \]

To solve the integral \[ I = \int_{a}^{b} \frac{e^{\frac{x}{a}} - e^{\frac{b}{x}}}{x} \, dx, \] we will use a substitution method. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(4)^(5) e^(x) dx

If a, b are positive real numbers, then |x|le a hArr

int_(1)^(e) (e^(x) (1+xlog x))/(x) dx

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of int_a^b(x-a)^3(b-x)^4dx is

For any real number x, the value of int_(0)^(x) [x]dx , is

int_(0)^(1)e^(2x)e^(e^(x) dx =)

The value of int_(0)^(100) e^(x-[x])dx , is

If f(a+b+1-x)=f(x) , for all x where a and b are fixed positive real numbers, the (1)/(a+b) int_(a)^(b) x(f(x)+f(x+1) dx is equal to :

Find the value of integral A=int_(-a)^(a)(e^(x))/(1+ e^x)dx