Home
Class 12
MATHS
The value of int(0)^(oo)(logx)/(a^(2)+x^...

The value of `int_(0)^(oo)(logx)/(a^(2)+x^(2))dx` is

A

`(2piloga)/(a)`

B

`(pi log a)/(2a)`

C

`pi loga`

D

0

Text Solution

Verified by Experts

The correct Answer is:
B

`I=int_(0)^(oo)(logx)/(a^(2)+x^(2))dx`
Put `x=(a^(2))/(y),dx=-(a^(2))/(y^(2))dy`
`therefore" "I=int_(oo)^(0)(log((a^(2))/(y)))/(a^(2)+(a^(4))/(y^(2)))((-a^(2))/(y^(2)))dy`
`" "=int_(oo)^(0)((loga^(2)-logy))/(a^(2)+y^(2))(-dy)`
`" "=log(a^(2))int_(0)^(oo)(dy)/(a^(2)+y^(2))-int_(0)^(oo)(logy)/(a^(2)+y^(2))dy`
`" "log(a^(2))(1)/(a)(tan^(-1)((y)/(a)))_(0)^(oo)-I`
`rArr" "2I=(2loga)/(a).(pi)/(2)`
`rArr" "I=(piloga)/(2a)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(oo) (logx)/(1+x^(2))dx , is

The value of int_(0)^(oo)(dx)/(1+x^(4)) is equal to

The value of int_0^oo (dx)/(1+x^4) is

The value of :.int_(0)^([x]) (2^(x))/(2^([x]))dx is

Evaluate int_(1)^(2)(logx)/(x)dx

int_(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

Evaluate : int_(0)^(oo)(cot^(-1)x)^(2)dx

The value of inte^(5logx)dx is

L e tA=int_0^oo(logx)/(1+x^3)dx Then find the value of int_0^oo(xlogx)/(1+x^3)dx in terms of A

If int_(0)^(oo)(sinx)/(x)dx=k , then the value of int_(0)^(oo)(sin^(3)x)/(x)dx is equal to