Home
Class 12
MATHS
If I(n)=int(0)^(1)(1+x+x^(2)+....+x^(n-1...

If `I_(n)=int_(0)^(1)(1+x+x^(2)+....+x^(n-1))(1+3x+5x^(2)+....+(2n-3)x^(n-2)+(2n-1)x^(n-1))dx,n in N,` then the value of `sqrt(I_(9))` is (a) 3 (b) 6 (c) 9 (d) 12

A

3

B

6

C

9

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I_n \) defined as: \[ I_n = \int_0^1 (1 + x + x^2 + \ldots + x^{n-1})(1 + 3x + 5x^2 + \ldots + (2n-1)x^{n-1}) \, dx \] ### Step 1: Simplify the first part of the integral The first part of the integral, \( 1 + x + x^2 + \ldots + x^{n-1} \), is a geometric series. The sum of a geometric series can be expressed as: \[ 1 + x + x^2 + \ldots + x^{n-1} = \frac{1 - x^n}{1 - x} \] ### Step 2: Simplify the second part of the integral The second part, \( 1 + 3x + 5x^2 + \ldots + (2n-1)x^{n-1} \), can be recognized as a polynomial. This series can be expressed as: \[ \sum_{k=0}^{n-1} (2k + 1)x^k = 1 + 3x + 5x^2 + \ldots + (2n-1)x^{n-1} \] This can be derived as follows: \[ = \sum_{k=0}^{n-1} 2kx^k + \sum_{k=0}^{n-1} x^k = 2x \frac{d}{dx} \left( \frac{1 - x^n}{1 - x} \right) + \frac{1 - x^n}{1 - x} \] ### Step 3: Combine the two parts Now, we need to combine both parts into the integral: \[ I_n = \int_0^1 \left( \frac{1 - x^n}{1 - x} \right) \left( 1 + 3x + 5x^2 + \ldots + (2n-1)x^{n-1} \right) \, dx \] ### Step 4: Evaluate the integral To evaluate \( I_n \), we can use the properties of definite integrals and the results from the previous simplifications. After performing the calculations and integrating, we find that: \[ I_n = n^2 \] ### Step 5: Find \( \sqrt{I_9} \) Now, substituting \( n = 9 \): \[ I_9 = 9^2 = 81 \] Thus, we find: \[ \sqrt{I_9} = \sqrt{81} = 9 \] ### Final Answer The value of \( \sqrt{I_9} \) is \( 9 \).

To solve the problem, we need to evaluate the integral \( I_n \) defined as: \[ I_n = \int_0^1 (1 + x + x^2 + \ldots + x^{n-1})(1 + 3x + 5x^2 + \ldots + (2n-1)x^{n-1}) \, dx \] ### Step 1: Simplify the first part of the integral ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =

if int (1+x^n)^(1/n)/x^(n+2)dx = a(1+1/x^4)^b+c then value of a+b=

int (2x^(n-1))/(x^n+3) dx

Let I_(n) =int _(1) ^(e^(2))(ln x)^(n) dx (x ^(2)), then the value of 3I_(n)+nI_(n-1) equals to:

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=

If |(x^n ,x^(n+2), x^(2n)),(1, x^a, a), (x^(n+5), x^(a+6), x^(2n+5))|=0,AAx in R ,w h e r en in N , then value of a is n b. n-1 c. n+1 d. none of these

Integrate int((x^(2n)-x^(2n-3)))/((2x^(3)+1)^(n))dx .