Home
Class 12
MATHS
A function f(x) satisfie f(x)=f((c)/(x))...

A function f(x) satisfie `f(x)=f((c)/(x))` for some real number c( gt 1) and all positive number 'x'. If `int_(1)^(sqrtc)(f(x))/(x)dx=3`, then `int_(1)^(c)(f(x))/(x)dx` is

A

4

B

6

C

8

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the properties of the function \( f(x) \) and the given integral. ### Step 1: Understanding the Function We are given that \( f(x) = f\left(\frac{c}{x}\right) \) for some real number \( c > 1 \) and for all positive \( x \). This property implies that the function \( f(x) \) is symmetric with respect to the transformation \( x \rightarrow \frac{c}{x} \). ### Step 2: Given Integral We know that: \[ \int_{1}^{\sqrt{c}} \frac{f(x)}{x} \, dx = 3 \] ### Step 3: Splitting the Integral We want to find: \[ \int_{1}^{c} \frac{f(x)}{x} \, dx \] We can split this integral into two parts: \[ \int_{1}^{c} \frac{f(x)}{x} \, dx = \int_{1}^{\sqrt{c}} \frac{f(x)}{x} \, dx + \int_{\sqrt{c}}^{c} \frac{f(x)}{x} \, dx \] ### Step 4: Changing Variables in the Second Integral For the second integral, we will use the substitution \( x = \frac{c}{t} \). Then, we have: \[ dx = -\frac{c}{t^2} \, dt \] When \( x = \sqrt{c} \), \( t = \sqrt{c} \) and when \( x = c \), \( t = 1 \). Thus, the limits change from \( \sqrt{c} \) to \( 1 \). Now, substituting into the integral: \[ \int_{\sqrt{c}}^{c} \frac{f(x)}{x} \, dx = \int_{\sqrt{c}}^{1} \frac{f\left(\frac{c}{t}\right)}{\frac{c}{t}} \left(-\frac{c}{t^2}\right) \, dt \] This simplifies to: \[ \int_{1}^{\sqrt{c}} \frac{f\left(\frac{c}{t}\right)}{t} \, dt \] Using the property of the function \( f(x) \): \[ f\left(\frac{c}{t}\right) = f(t) \] Thus, \[ \int_{\sqrt{c}}^{c} \frac{f(x)}{x} \, dx = \int_{1}^{\sqrt{c}} \frac{f(t)}{t} \, dt \] ### Step 5: Combining the Integrals Now, we can combine the two integrals: \[ \int_{1}^{c} \frac{f(x)}{x} \, dx = \int_{1}^{\sqrt{c}} \frac{f(x)}{x} \, dx + \int_{1}^{\sqrt{c}} \frac{f(t)}{t} \, dt \] This gives us: \[ \int_{1}^{c} \frac{f(x)}{x} \, dx = 3 + 3 = 6 \] ### Final Answer Thus, we find that: \[ \int_{1}^{c} \frac{f(x)}{x} \, dx = 6 \]

To solve the problem step by step, we will use the properties of the function \( f(x) \) and the given integral. ### Step 1: Understanding the Function We are given that \( f(x) = f\left(\frac{c}{x}\right) \) for some real number \( c > 1 \) and for all positive \( x \). This property implies that the function \( f(x) \) is symmetric with respect to the transformation \( x \rightarrow \frac{c}{x} \). ### Step 2: Given Integral We know that: \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

(1)/(c )int_(ac)^(bc)f((x)/(c ))dx=

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =

Let f(x) be a continuous function and I = int_(1)^(9) sqrt(x)f(x) dx , then

Let f(x) be a function satisying f(x) = f((100)/(x)) AA x ge 0 . If int_(1)^(10) (f(x))/(x) dx = 5 then find the value of int_(1)^(100)(f(x))/(x) dx .

int e^x {f(x)-f'(x)}dx= phi(x) , then int e^x f(x) dx is

The value of int_(-10)^(10)[{f(f(x)}+{f(f((1)/(x))}]dx , where f(x)=(1-x)/(1+x)

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

If a is a fixed real number such that f(a-x)+f(a+x)=0, then int_(0)^(2a) f(x) dx=

If int(1)/(x^(2)+2x+2)dx=f (x) +C , then f (x)=