Home
Class 12
MATHS
Let I(1)=int(0)^(oo)(x^(2)sqrtx)/((1+x)^...

Let `I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx,I_(2)=int_(0)^(oo)(xsqrtx)/((1+x)^(6))dx`, then

A

`I_(1)=2I_(2)`

B

`I_(2)=2I_(1)`

C

`I_(1)=I_(2)`

D

`I_(1)=-I_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) given by: \[ I_1 = \int_0^{\infty} \frac{x^2 \sqrt{x}}{(1+x)^6} \, dx \] \[ I_2 = \int_0^{\infty} \frac{x \sqrt{x}}{(1+x)^6} \, dx \] ### Step 1: Simplifying the Integrals First, we can rewrite \( \sqrt{x} \) as \( x^{1/2} \). Therefore, we can express the integrals as: \[ I_1 = \int_0^{\infty} \frac{x^{5/2}}{(1+x)^6} \, dx \] \[ I_2 = \int_0^{\infty} \frac{x^{3/2}}{(1+x)^6} \, dx \] ### Step 2: Using the Beta Function To evaluate these integrals, we can use the substitution \( x = \frac{t}{1-t} \) which transforms the integral into a form involving the Beta function. The Jacobian of this transformation is \( \frac{1}{(1-t)^2} \), and the limits change from \( 0 \) to \( 1 \) as \( x \) goes from \( 0 \) to \( \infty \). ### Step 3: Evaluating \( I_1 \) For \( I_1 \): \[ I_1 = \int_0^1 \frac{\left(\frac{t}{1-t}\right)^{5/2}}{(1+\frac{t}{1-t})^6} \cdot \frac{1}{(1-t)^2} \, dt \] This simplifies to: \[ = \int_0^1 \frac{t^{5/2}}{(1-t)^{5/2}} \cdot \frac{(1-t)^6}{(1-t+t)^6} \cdot \frac{1}{(1-t)^2} \, dt \] \[ = \int_0^1 \frac{t^{5/2}}{(1-t)^{5/2}} \cdot \frac{(1-t)^4}{(1)^6} \, dt \] \[ = \int_0^1 t^{5/2} (1-t)^{4} \, dt \] This is a Beta function \( B\left(\frac{7}{2}, 5\right) \). ### Step 4: Evaluating \( I_2 \) For \( I_2 \): \[ I_2 = \int_0^1 \frac{\left(\frac{t}{1-t}\right)^{3/2}}{(1+\frac{t}{1-t})^6} \cdot \frac{1}{(1-t)^2} \, dt \] This simplifies to: \[ = \int_0^1 \frac{t^{3/2}}{(1-t)^{3/2}} \cdot \frac{(1-t)^6}{(1-t+t)^6} \cdot \frac{1}{(1-t)^2} \, dt \] \[ = \int_0^1 t^{3/2} (1-t)^{4} \, dt \] This is a Beta function \( B\left(\frac{5}{2}, 5\right) \). ### Step 5: Relating \( I_1 \) and \( I_2 \) Using the properties of the Beta function, we have: \[ I_1 = B\left(\frac{7}{2}, 5\right) = \frac{\Gamma\left(\frac{7}{2}\right) \Gamma(5)}{\Gamma\left(\frac{7}{2}+5\right)} \] \[ I_2 = B\left(\frac{5}{2}, 5\right) = \frac{\Gamma\left(\frac{5}{2}\right) \Gamma(5)}{\Gamma\left(\frac{5}{2}+5\right)} \] To find the relationship between \( I_1 \) and \( I_2 \), we can use the property of the Gamma function and the fact that \( \Gamma(z+1) = z \Gamma(z) \). ### Final Result After evaluating both integrals, we can find the relationship between \( I_1 \) and \( I_2 \) and conclude the problem.

To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) given by: \[ I_1 = \int_0^{\infty} \frac{x^2 \sqrt{x}}{(1+x)^6} \, dx \] \[ I_2 = \int_0^{\infty} \frac{x \sqrt{x}}{(1+x)^6} \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx

int_(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

Let I_(1)=int_(0)^(1)(|lnx|)/(x^(2)+4x+1)dx and I_(2)=int_(1)^(oo)(lnx)/(x^(2)+4x+1)dx , then

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

1. int_(0)^(oo)e^(-x/2)dx

Let I_(1) = int_(0)^(pi//4)1/((1+tanx)^(2))dx , I_(2) = int_(0)^(1)(dx)/((1+x)^(2)(1+x^(2))) Then find the value of (I_(1))/(I_(2)) .

If I_(1) =int _(0)^(1) (1+x ^(8))/(1+x^(4)) dx sand I_(2)=int _(0)^(1) (1+ x ^(9))/(1+x ^(2)) dx, then:

Prove that int_(0)^(oo) (sin^(2)x)/(x^(2))dx=int_(0)^(oo) (sinx)x dx

int_(0)^(oo) (dx)/([x+sqrt(x^(2)+1)]^(3))dx=