Home
Class 12
MATHS
Let f(x)=int(0)^(x)(e^(t))/(t)dt(xgt0), ...

Let `f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0),`
then `e^(-a)[f(x+1)-f(1+a)]=`

A

`int_(0)^(x)=(e^(t))/((t+a))dt`

B

`int_(1)^(x)(e^(t))/(t+a)dt`

C

`e^(-a)int_(1+a)^(x+a)(e^(t))/(t)dt`

D

`int_(0)^(x)(e^(t-a))/((t+a))dt`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( e^{-a}[f(x+1)-f(1+a)] \), where \( f(x) = \int_{0}^{x} \frac{e^t}{t} dt \). ### Step-by-Step Solution: 1. **Define the function \( f(x) \)**: \[ f(x) = \int_{0}^{x} \frac{e^t}{t} dt \] 2. **Substitute \( x+1 \) and \( 1+a \) into \( f \)**: \[ f(x+1) = \int_{0}^{x+1} \frac{e^t}{t} dt \] \[ f(1+a) = \int_{0}^{1+a} \frac{e^t}{t} dt \] 3. **Calculate \( f(x+1) - f(1+a) \)**: \[ f(x+1) - f(1+a) = \int_{0}^{x+1} \frac{e^t}{t} dt - \int_{0}^{1+a} \frac{e^t}{t} dt \] This can be rewritten using the property of integrals: \[ = \int_{1+a}^{x+1} \frac{e^t}{t} dt \] 4. **Multiply by \( e^{-a} \)**: \[ e^{-a}[f(x+1) - f(1+a)] = e^{-a} \int_{1+a}^{x+1} \frac{e^t}{t} dt \] 5. **Evaluate the integral**: To evaluate the integral \( \int_{1+a}^{x+1} \frac{e^t}{t} dt \), we can leave it in this form as it represents the area under the curve \( \frac{e^t}{t} \) from \( t = 1+a \) to \( t = x+1 \). 6. **Final expression**: Thus, the final expression is: \[ e^{-a} \int_{1+a}^{x+1} \frac{e^t}{t} dt \] ### Final Answer: \[ e^{-a}[f(x+1) - f(1+a)] = e^{-a} \int_{1+a}^{x+1} \frac{e^t}{t} dt \]

To solve the problem, we need to evaluate the expression \( e^{-a}[f(x+1)-f(1+a)] \), where \( f(x) = \int_{0}^{x} \frac{e^t}{t} dt \). ### Step-by-Step Solution: 1. **Define the function \( f(x) \)**: \[ f(x) = \int_{0}^{x} \frac{e^t}{t} dt \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

If f(x)=int_((1)/(x))^(sqrt(x))cost^(2)dt(xgt0)" then "(df(x))/(dx) is

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

Statement-1: If f(x)=int_(1)^(x) (log_(e )t)/(1+t+t^(2))dt , then f(x)=f((1)/(x)) for all x gr 0 . Statement-2:If f(x) =int_(1)^(x) (log_(e )t)/(1+t)dt , then f(x)+f((1)/(x))=((log_(e )x)^(2))/(2)

Let f(x) = int_(-2)^(x)|t + 1|dt , then

Let f(x)=int_(0)^(x)(sin^(100)t)/(sin^(100)t+cos^(100)t)dt , then f(2pi)=

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to : (a) 0 (b) 2e (c) 2e^2 -2 (d) e^2-e

If f(x)=int_(1)^(x)(logt)(1+t+t^(2))dt AAxge1 , then prove that f(x)=f(1/x) .

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval