Home
Class 12
MATHS
If a, b and c are real numbers, then the...

If a, b and c are real numbers, then the value of `lim_(trarr0) ((1)/(t)int_(0)^(t)(1+asinbx)^(c//x)dx)` equals

A

abc

B

`(ab)/(c)`

C

`(bc)/(a)`

D

`(ca)/(b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given in the question, we will follow these steps: ### Step-by-Step Solution: 1. **Identify the Limit Expression**: We need to evaluate: \[ \lim_{t \to 0} \frac{1}{t} \int_{0}^{t} (1 + a \sin(bx))^{\frac{c}{x}} \, dx \] 2. **Rewrite the Expression**: The limit can be rewritten using the logarithm: \[ \lim_{t \to 0} \ln\left(\frac{1}{t} \int_{0}^{t} (1 + a \sin(bx))^{\frac{c}{x}} \, dx\right) \] 3. **Apply L'Hôpital's Rule**: Since substituting \( t = 0 \) directly leads to the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule. We differentiate the numerator and denominator: \[ \lim_{t \to 0} \frac{\frac{d}{dt} \left( \int_{0}^{t} (1 + a \sin(bx))^{\frac{c}{x}} \, dx \right)}{\frac{d}{dt}(t)} \] 4. **Differentiate the Integral**: By the Fundamental Theorem of Calculus: \[ \frac{d}{dt} \left( \int_{0}^{t} (1 + a \sin(bx))^{\frac{c}{x}} \, dx \right) = (1 + a \sin(bt))^{\frac{c}{t}} \] 5. **Evaluate the Limit**: Now we have: \[ \lim_{t \to 0} (1 + a \sin(bt))^{\frac{c}{t}} \] This is of the form \( 1^{\infty} \). We can rewrite it using the exponential function: \[ \lim_{t \to 0} e^{\frac{c}{t} \ln(1 + a \sin(bt))} \] 6. **Simplify the Logarithm**: As \( t \to 0 \), \( \sin(bt) \to bt \), hence: \[ \ln(1 + a \sin(bt)) \approx a \sin(bt) \text{ for small } t \] Therefore: \[ \frac{c}{t} \ln(1 + a \sin(bt)) \approx \frac{c}{t} (a \sin(bt)) \approx \frac{c}{t} (a bt) = abc \] 7. **Final Limit Evaluation**: Thus, we can conclude: \[ \lim_{t \to 0} e^{abc} = e^{abc} \] 8. **Final Answer**: The value of the limit is: \[ abc \]

To solve the limit problem given in the question, we will follow these steps: ### Step-by-Step Solution: 1. **Identify the Limit Expression**: We need to evaluate: \[ \lim_{t \to 0} \frac{1}{t} \int_{0}^{t} (1 + a \sin(bx))^{\frac{c}{x}} \, dx ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xto0)(1)/(x) int_(0)^(x)(1+ sin 2t)^(1/t) dt equals :

The value of lim_(a rarr oo)(1)/(a^(2))int_(0)^(a)ln(1+e^(x))dx equals

The value of lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx , is

lim_(trarr0) int_(0)^(2pi)(|sin(x+t)-sinx|)/(|t|)dx equals

The value of lim_(xrarr0)(1)/(x^(3)) int_(0)^(x)(tln(1+t))/(t^(4)+4) dt

For any real number x, the value of int_(0)^(x) [x]dx , is

lim_(x rarr 0) (int_(0)^(x) t tan(5t)dt)/(x^(3)) is equal to :

The value of lim_(x rarr0)(2int_(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)dx is

The value of lim_(xto1^(+))(int_(1)^(x)|t-1|dt)/(sin(x-1)) is:

Let lim_(T rarr infty) (1)/(T) int_(0)^(T) ( sin x + sin ax)^(2) dx =L , then