Home
Class 12
MATHS
If int(0)^(x)f(x)sint dt=" constant, " 0...

If `int_(0)^(x)f(x)sint dt=" constant, " 0 lt x lt 2pi and f(pi)=2`, then the value of `f(pi//2)` is

A

3

B

2

C

4

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f\left(\frac{\pi}{2}\right) \) given that \[ \int_{0}^{x} f(x) \sin t \, dt = \text{constant} \] for \( 0 < x < 2\pi \) and \( f(\pi) = 2 \). ### Step 1: Differentiate both sides with respect to \( x \) We start by differentiating both sides of the equation with respect to \( x \): \[ \frac{d}{dx} \left( \int_{0}^{x} f(x) \sin t \, dt \right) = 0 \] Using the Leibniz rule for differentiation under the integral sign, we have: \[ f(x) \sin x + \int_{0}^{x} f'(x) \sin t \, dt = 0 \] ### Step 2: Simplify the equation From the above equation, we can isolate \( f'(x) \): \[ f(x) \sin x = -\int_{0}^{x} f'(x) \sin t \, dt \] ### Step 3: Rearranging the terms Rearranging gives us: \[ f'(x) \int_{0}^{x} \sin t \, dt = -f(x) \sin x \] ### Step 4: Evaluate the integral The integral \( \int_{0}^{x} \sin t \, dt \) evaluates to: \[ -\cos x + 1 \] Thus, we can rewrite the equation as: \[ f'(x)(1 - \cos x) = -f(x) \sin x \] ### Step 5: Separate variables Now we can separate variables: \[ \frac{f'(x)}{f(x)} = -\frac{\sin x}{1 - \cos x} \] ### Step 6: Integrate both sides Integrating both sides gives: \[ \ln |f(x)| = -\int \frac{\sin x}{1 - \cos x} \, dx \] To integrate the right side, we can use the substitution \( u = 1 - \cos x \), \( du = \sin x \, dx \): \[ \int \frac{\sin x}{1 - \cos x} \, dx = -\ln |1 - \cos x| + C \] Thus, we have: \[ \ln |f(x)| = \ln |C| - \ln |1 - \cos x| \] This simplifies to: \[ f(x) = \frac{C}{1 - \cos x} \] ### Step 7: Use the given condition \( f(\pi) = 2 \) Substituting \( x = \pi \): \[ f(\pi) = \frac{C}{1 - \cos \pi} = \frac{C}{1 - (-1)} = \frac{C}{2} \] Setting this equal to 2 gives: \[ \frac{C}{2} = 2 \implies C = 4 \] ### Step 8: Write the function \( f(x) \) Thus, we have: \[ f(x) = \frac{4}{1 - \cos x} \] ### Step 9: Find \( f\left(\frac{\pi}{2}\right) \) Now we can find \( f\left(\frac{\pi}{2}\right) \): \[ f\left(\frac{\pi}{2}\right) = \frac{4}{1 - \cos\left(\frac{\pi}{2}\right)} = \frac{4}{1 - 0} = 4 \] ### Final Answer The value of \( f\left(\frac{\pi}{2}\right) \) is: \[ \boxed{4} \]

To solve the problem, we need to find the value of \( f\left(\frac{\pi}{2}\right) \) given that \[ \int_{0}^{x} f(x) \sin t \, dt = \text{constant} \] for \( 0 < x < 2\pi \) and \( f(\pi) = 2 \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 lt x lt pi/2 then

If 0 lt x lt pi /2 then

Let f be a function defined on the interval [0,2pi] such that int_(0)^(x)(f^(')(t)-sin2t)dt=int_(x)^(0)f(t)tantdt and f(0)=1 . Then the maximum value of f(x) is…………………..

If int_(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0} , then the value of f((pi)/(6)) will be equal to

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, then the value of int_(0)^(pi//2) {f(2x)-f''(2x)}sin x cos x dx is equal to

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x)=int_(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt (pi)/2 then

If int_(0)^(npi) f(cos^(2)x)dx=k int_(0)^(pi) f(cos^(2)x)dx , then the value of k, is