Home
Class 12
MATHS
lim(xrarr0) (int(0)^(x)(t^(2))/(sqrt(a+t...

`lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0)`. Then the value of a is

A

`1//2`

B

`1//4`

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we need to evaluate the following expression: \[ \lim_{x \to 0} \frac{\int_0^x \frac{t^2}{\sqrt{a+t}} dt}{x - \sin x} = 1 \quad (a > 0) \] ### Step 1: Identify the Form of the Limit As \( x \to 0 \), both the numerator and denominator approach 0. Thus, we have the indeterminate form \( \frac{0}{0} \). **Hint:** Recognize when to apply L'Hôpital's Rule, which is useful for indeterminate forms. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately. **Numerator:** \[ \text{Let } I(x) = \int_0^x \frac{t^2}{\sqrt{a+t}} dt \] Using the Fundamental Theorem of Calculus, we differentiate: \[ I'(x) = \frac{x^2}{\sqrt{a+x}} \] **Denominator:** \[ \frac{d}{dx}(x - \sin x) = 1 - \cos x \] **Hint:** Remember to differentiate both the numerator and the denominator. ### Step 3: Rewrite the Limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{\frac{x^2}{\sqrt{a+x}}}{1 - \cos x} \] ### Step 4: Substitute \( x = 0 \) Again As \( x \to 0 \), we again encounter the form \( \frac{0}{0} \). We apply L'Hôpital's Rule again. **Numerator:** \[ \frac{d}{dx}\left(\frac{x^2}{\sqrt{a+x}}\right) = \frac{2x \sqrt{a+x} - \frac{1}{2} x^2 \cdot \frac{1}{\sqrt{a+x}}}{a+x} \] This simplifies to: \[ \frac{2x(a+x) - \frac{1}{2} x^2}{(a+x)\sqrt{a+x}} \] **Denominator:** \[ \frac{d}{dx}(1 - \cos x) = \sin x \] **Hint:** Differentiate carefully, and simplify where possible. ### Step 5: Rewrite the Limit Again Now we have: \[ \lim_{x \to 0} \frac{\frac{2x(a+x) - \frac{1}{2} x^2}{(a+x)\sqrt{a+x}}}{\sin x} \] ### Step 6: Use the Limit of \( \sin x \) We can rewrite \( \sin x \) as \( x \cdot \frac{\sin x}{x} \) and use the fact that \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \): \[ \lim_{x \to 0} \frac{2(a+x) - \frac{1}{2} x}{(a+x)\sqrt{a+x}} = \frac{2a}{a\sqrt{a}} = \frac{2}{\sqrt{a}} \] ### Step 7: Set the Limit Equal to 1 According to the problem statement, this limit equals 1: \[ \frac{2}{\sqrt{a}} = 1 \] ### Step 8: Solve for \( a \) Squaring both sides gives: \[ 4 = a \quad \Rightarrow \quad a = 4 \] ### Final Answer The value of \( a \) is: \[ \boxed{4} \]

To solve the limit problem given, we need to evaluate the following expression: \[ \lim_{x \to 0} \frac{\int_0^x \frac{t^2}{\sqrt{a+t}} dt}{x - \sin x} = 1 \quad (a > 0) \] ### Step 1: Identify the Form of the Limit As \( x \to 0 \), both the numerator and denominator approach 0. Thus, we have the indeterminate form \( \frac{0}{0} \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Given that lim_(x to 0)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1 , then find the values of a and b.

lim_(xrarr0) (sinx)/(x)= ?

lim_(xrarr0) (sqrt(2+x)-sqrt(2))/(x)

Let L_(1) = lim_(xrarr0^(+)) (int_(0)^(x^(2)) sinsqrt(t)dt)/(x-sinx) , then identify the correct option(s).

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

lim_(xrarr0) (sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

lim_(xrarr0) (3sqrt(1+x-1))/(x)

lim_(xrarr0) (sqrt(x^(2)+1)-1)/(sqrt(x^(2)+9)-3)?