Home
Class 12
MATHS
If int(0)^(x)f(t)dt=e^(x)-ae^(2x)int(0)^...

If `int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt`, then

A

`a=(1)/(3-2e)`

B

`f(x)=e^(x)-2e^(2x)`

C

`a=(1)/(e)`

D

`f(x)=e^(x)-e^(-x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \int_{0}^{x} f(t) dt = e^{x} - ae^{2x} \int_{0}^{1} f(t)e^{-t} dt \] ### Step 1: Evaluate the integral at \( x = 0 \) Substituting \( x = 0 \): \[ \int_{0}^{0} f(t) dt = e^{0} - ae^{0} \int_{0}^{1} f(t)e^{-t} dt \] The left-hand side becomes: \[ 0 = 1 - a \int_{0}^{1} f(t)e^{-t} dt \] This simplifies to: \[ a \int_{0}^{1} f(t)e^{-t} dt = 1 \] Thus, we can express the integral as: \[ \int_{0}^{1} f(t)e^{-t} dt = \frac{1}{a} \] ### Step 2: Substitute back into the original equation Now, substituting this back into the original equation: \[ \int_{0}^{x} f(t) dt = e^{x} - ae^{2x} \cdot \frac{1}{a} \] This simplifies to: \[ \int_{0}^{x} f(t) dt = e^{x} - e^{2x} \] ### Step 3: Differentiate both sides with respect to \( x \) Differentiating both sides gives: \[ f(x) = \frac{d}{dx} \left( e^{x} - e^{2x} \right) \] Calculating the derivative: \[ f(x) = e^{x} - 2e^{2x} \] ### Conclusion Thus, the function \( f(x) \) is: \[ f(x) = e^{x} - 2e^{2x} \]

To solve the problem, we start with the given equation: \[ \int_{0}^{x} f(t) dt = e^{x} - ae^{2x} \int_{0}^{1} f(t)e^{-t} dt \] ### Step 1: Evaluate the integral at \( x = 0 \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If int_(0)^(x) f(t)dt=x^(2)+2x-int_(0)^(x) tf(t)dt, x in (0,oo) . Then, f(x) is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

Prove that int_(0)^(x)e^(xt)e^(-t^(2))dt=e^(x^(2)//4)int_(0)^(x)e^(-t^(2)//4)dt .

Let A_(1) = int_(0)^(x)(int_(0)^(u)f(t)dt) dt and A_(2) = int_(0)^(x)f(u).(x-u) then (A_(1))/(A_(2)) is equal to :

Let f be a differentiable function on R and satisfying the integral equation x int_(0)^(x)f(t)dt-int_(0)^(x)tf(x-t)dt=e^(x)-1 AA x in R . Then f(1) equals to ___