Home
Class 12
MATHS
A function f(x) satisfies f(x)=sinx+int0...

A function `f(x)` satisfies `f(x)=sinx+int_0^xf^(prime)(t)(2sint-sin^2t)dt` is

A

`f((pi)/(6))=1`

B

`g(x)=int_(0)^(x)f(t)` dt is increasing on `(0,pi)`

C

`f(0)=0`

D

f(x) is increasing on `(0,pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation for the function \( f(x) \): \[ f(x) = \sin x + \int_0^x f'(t) (2 \sin t - \sin^2 t) dt \] ### Step 1: Differentiate both sides with respect to \( x \) Using the Fundamental Theorem of Calculus and the chain rule, we differentiate the right-hand side: \[ f'(x) = \cos x + f'(x)(2 \sin x - \sin^2 x) \] ### Step 2: Rearranging the equation We can rearrange the equation to isolate \( f'(x) \): \[ f'(x) - f'(x)(2 \sin x - \sin^2 x) = \cos x \] Factoring out \( f'(x) \): \[ f'(x) \left(1 - (2 \sin x - \sin^2 x)\right) = \cos x \] ### Step 3: Simplifying the expression We can simplify the expression inside the parentheses: \[ 1 - (2 \sin x - \sin^2 x) = 1 - 2 \sin x + \sin^2 x \] This can be rewritten as: \[ (1 - \sin x)^2 \] Thus, we have: \[ f'(x) (1 - \sin x)^2 = \cos x \] ### Step 4: Solving for \( f'(x) \) Now, we can solve for \( f'(x) \): \[ f'(x) = \frac{\cos x}{(1 - \sin x)^2} \] ### Step 5: Integrating to find \( f(x) \) Next, we integrate \( f'(x) \) to find \( f(x) \): \[ f(x) = \int \frac{\cos x}{(1 - \sin x)^2} dx \] Let \( u = 1 - \sin x \), then \( du = -\cos x \, dx \). Therefore, \( dx = -\frac{du}{\cos x} \). The integral becomes: \[ f(x) = -\int \frac{1}{u^2} du = \frac{1}{u} + C = \frac{1}{1 - \sin x} + C \] ### Step 6: Finding the constant \( C \) To find \( C \), we use the condition \( f(0) = 0 \): \[ f(0) = \frac{1}{1 - \sin(0)} + C = \frac{1}{1} + C = 1 + C \] Setting this equal to 0 gives: \[ 1 + C = 0 \implies C = -1 \] ### Final Expression for \( f(x) \) Thus, we have: \[ f(x) = \frac{1}{1 - \sin x} - 1 = \frac{1 - (1 - \sin x)}{1 - \sin x} = \frac{\sin x}{1 - \sin x} \] ### Conclusion The function \( f(x) \) is: \[ f(x) = \frac{\sin x}{1 - \sin x} \]

To solve the problem, we start with the given equation for the function \( f(x) \): \[ f(x) = \sin x + \int_0^x f'(t) (2 \sin t - \sin^2 t) dt \] ### Step 1: Differentiate both sides with respect to \( x \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

If a function y=f(x) such that f'(x) is continuous function and satisfies (f(x))^(2)=k+int_(0)^(x) [{f(t)}^(2)+{f'(t)}^(2)]dt,k in R^(+) , then

A differentiable function satisfies f(x) = int_(0)^(x) (f(t) cot t - cos(t - x))dt . Which of the following hold(s) good?

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

If f(x)=int_0^x tf(t)dt+2, then

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

If function f satisfies the relation f(x)xf^(prime)(-x)=f(-x)xf^(prime)(x)fora l lx ,a n df(0)=3,a n diff(3)=3, then the value of f(-3) is ______________