Home
Class 12
MATHS
Consider the function f(x)=int(0)^(x)(5...

Consider the function `f(x)=int_(0)^(x)(5ln(1+t^(2))-10t tan^(-1)t+16sint)dt`. Which is not true for `int_(0)^(x)f(t)dt` gt?

A

positive for all `x in (0,1)`

B

increasing for all `x in (0,1)`

C

non-monotonic for all `x in (0,1)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given by the integral and its properties. Let's break it down step by step. ### Step 1: Define the function We are given the function: \[ f(x) = \int_0^x \left( 5 \ln(1 + t^2) - 10t \tan^{-1}(t) + 16 \sin(t) \right) dt \] ### Step 2: Differentiate \( f(x) \) To analyze the behavior of \( f(x) \), we will find its derivative using the Fundamental Theorem of Calculus: \[ f'(x) = 5 \ln(1 + x^2) - 10x \tan^{-1}(x) + 16 \sin(x) \] ### Step 3: Find the second derivative \( f''(x) \) Next, we differentiate \( f'(x) \) to find the second derivative: \[ f''(x) = \frac{d}{dx} \left( 5 \ln(1 + x^2) \right) - \frac{d}{dx} \left( 10x \tan^{-1}(x) \right) + \frac{d}{dx} \left( 16 \sin(x) \right) \] Calculating each term: 1. \( \frac{d}{dx} \left( 5 \ln(1 + x^2) \right) = \frac{10x}{1 + x^2} \) 2. Using the product rule for \( 10x \tan^{-1}(x) \): \[ \frac{d}{dx} \left( 10x \tan^{-1}(x) \right) = 10 \tan^{-1}(x) + \frac{10x}{1 + x^2} \] 3. \( \frac{d}{dx} \left( 16 \sin(x) \right) = 16 \cos(x) \) Putting it all together: \[ f''(x) = \frac{10x}{1 + x^2} - \left( 10 \tan^{-1}(x) + \frac{10x}{1 + x^2} \right) + 16 \cos(x) \] This simplifies to: \[ f''(x) = -10 \tan^{-1}(x) + 16 \cos(x) \] ### Step 4: Analyze the behavior of \( f''(x) \) To determine where \( f''(x) \) is positive or negative, we need to analyze the expression: \[ f''(x) = -10 \tan^{-1}(x) + 16 \cos(x) \] We need to find intervals where this expression is greater than or less than zero. ### Step 5: Evaluate \( \int_0^x f(t) dt \) To find the integral \( \int_0^x f(t) dt \), we can apply the Fundamental Theorem of Calculus again: \[ \int_0^x f(t) dt = F(x) \text{ where } F'(x) = f(x) \] ### Conclusion The properties of \( f(x) \) and \( f'(x) \) will help us determine which statements about \( \int_0^x f(t) dt \) are true or false.

To solve the problem, we need to analyze the function given by the integral and its properties. Let's break it down step by step. ### Step 1: Define the function We are given the function: \[ f(x) = \int_0^x \left( 5 \ln(1 + t^2) - 10t \tan^{-1}(t) + 16 \sin(t) \right) dt \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function f(x)=int_(0)^(x)(5ln(1+t^(2))-10t tan^(-1)t+16sint)dt . f(x) is

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

In (-4,4) the function f(x)=int_(-10)^x (t^2-4)e^(-4t) dt , has

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt

" If " f(x) =int_(0)^(x)" t sin t dt tehn " f(x) is

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

For the functions f(x)= int_(0)^(x) (sin t)/t dt where x gt 0 . At x=n pi f(x) attains

If f(x)=int_0^x tf(t)dt+2, then

f (x) = int _(0) ^(x) e ^(t ^(3)) (t ^(2) -1) (t+1) ^(2011) dt (x gt 0) then :