Home
Class 12
MATHS
If int0^ooe^(-ax)dx=1/a, then int0^oo(x^...

If `int_0^ooe^(-ax)dx=1/a`, then `int_0^oo(x^n)e^(-ax)dx` is

A

`((-1)^(n)n!)/(a^(n+1))`

B

`((-1)^(n)(n-1)!)/(a^(n))`

C

`(n!)/(a^(n+1))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^\infty x^n e^{-ax} \, dx \), given that \( \int_0^\infty e^{-ax} \, dx = \frac{1}{a} \), we can use integration by parts and the properties of the gamma function. Here’s the step-by-step solution: ### Step 1: Set Up the Integral We start with the integral we want to evaluate: \[ I_n = \int_0^\infty x^n e^{-ax} \, dx \] ### Step 2: Use Integration by Parts We will use integration by parts, where we let: - \( u = x^n \) (thus \( du = n x^{n-1} \, dx \)) - \( dv = e^{-ax} \, dx \) (thus \( v = -\frac{1}{a} e^{-ax} \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we have: \[ I_n = \left[ -\frac{1}{a} x^n e^{-ax} \right]_0^\infty + \frac{n}{a} \int_0^\infty x^{n-1} e^{-ax} \, dx \] ### Step 3: Evaluate the Boundary Term Now we evaluate the boundary term \( \left[ -\frac{1}{a} x^n e^{-ax} \right]_0^\infty \): - As \( x \to \infty \), \( e^{-ax} \) approaches 0 faster than \( x^n \) approaches infinity, so this term approaches 0. - As \( x \to 0 \), \( x^n e^{-ax} \) approaches 0. Thus, the boundary term is 0: \[ \left[ -\frac{1}{a} x^n e^{-ax} \right]_0^\infty = 0 \] ### Step 4: Substitute Back into the Integral Now we have: \[ I_n = \frac{n}{a} I_{n-1} \] ### Step 5: Recursively Define the Integral We can express \( I_n \) in terms of \( I_{n-1} \): \[ I_n = \frac{n}{a} I_{n-1} \] Continuing this process, we can express \( I_{n-1}, I_{n-2}, \ldots, I_0 \): \[ I_{n-1} = \frac{n-1}{a} I_{n-2} \] \[ I_{n-2} = \frac{n-2}{a} I_{n-3} \] Continuing this until we reach \( I_0 \): \[ I_0 = \int_0^\infty e^{-ax} \, dx = \frac{1}{a} \] ### Step 6: Combine the Results Now we can substitute back: \[ I_n = \frac{n}{a} \cdot \frac{n-1}{a} \cdot \frac{n-2}{a} \cdots \frac{1}{a} \cdot I_0 \] This gives us: \[ I_n = \frac{n!}{a^{n+1}} \] ### Final Result Thus, the final result for the integral \( \int_0^\infty x^n e^{-ax} \, dx \) is: \[ \int_0^\infty x^n e^{-ax} \, dx = \frac{n!}{a^{n+1}} \]

To solve the integral \( \int_0^\infty x^n e^{-ax} \, dx \), given that \( \int_0^\infty e^{-ax} \, dx = \frac{1}{a} \), we can use integration by parts and the properties of the gamma function. Here’s the step-by-step solution: ### Step 1: Set Up the Integral We start with the integral we want to evaluate: \[ I_n = \int_0^\infty x^n e^{-ax} \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-1: If int_0^oo e^(-ax)dx=1/a , then int_0^oo x^me^(-ax)dx=(lfloorm)/a^(m+1) ,Statement-2: d^n/dx^n(e^(kx))=k^n e^(kx) and d^n/dx^n(1/x)=((-1)^nlfloorn)/x^(n+1) (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

int_0^1 e^(2-3x)dx

If int_0^ooe^(-x^2) dx=(sqrtpi)/2 , then int_0^ooe^(-ax^2) dx where a gt 0 is:

1. int_(0)^(oo)e^(-x/2)dx

int_0^2 e^(x/2) dx

Evaluate : int_0^ooe^(-x)dx

int_0^1 x^2 e^(2x) dx

If I_(m)=int_(0)^(oo) e^(-x)x^(n-1)dx, "then" int_(0)^(oo) e^(-lambdax) x^(n-1)dx

int_0^1 e^x dx

int_0^1000 e^(x-[x])dx