Home
Class 12
MATHS
Let nge1, n in Z. The real number a in 0...

Let `nge1, n in Z`. The real number `a in 0,1` that minimizes the integral `int_(0)^(1)|x^(n)-a^(n)|dx` is

A

`(1)/(2)`

B

2

C

1

D

`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of minimizing the integral \( I(a) = \int_0^1 |x^n - a^n| \, dx \) for \( a \in (0, 1) \), we can follow these steps: ### Step 1: Split the Integral Since \( a \in (0, 1) \), we can split the integral at \( x = a \): \[ I(a) = \int_0^a |x^n - a^n| \, dx + \int_a^1 |x^n - a^n| \, dx \] In the interval \( [0, a] \), \( x^n < a^n \), so \( |x^n - a^n| = a^n - x^n \). In the interval \( [a, 1] \), \( x^n > a^n \), so \( |x^n - a^n| = x^n - a^n \). Thus, we can rewrite the integral as: \[ I(a) = \int_0^a (a^n - x^n) \, dx + \int_a^1 (x^n - a^n) \, dx \] ### Step 2: Evaluate the Integrals Now we evaluate each integral separately. 1. For the first integral: \[ \int_0^a (a^n - x^n) \, dx = a^n x \bigg|_0^a - \frac{x^{n+1}}{n+1} \bigg|_0^a = a^{n+1} - \frac{a^{n+1}}{n+1} = a^{n+1} \left(1 - \frac{1}{n+1}\right) = \frac{n a^{n+1}}{n+1} \] 2. For the second integral: \[ \int_a^1 (x^n - a^n) \, dx = \frac{x^{n+1}}{n+1} \bigg|_a^1 - a^n (x \bigg|_a^1) = \frac{1}{n+1} - \frac{a^{n+1}}{n+1} - a^n (1 - a) = \frac{1 - a^{n+1}}{n+1} - a^n (1 - a) \] ### Step 3: Combine the Results Now we combine the results: \[ I(a) = \frac{n a^{n+1}}{n+1} + \left(\frac{1 - a^{n+1}}{n+1} - a^n (1 - a)\right) \] Simplifying this gives: \[ I(a) = \frac{n a^{n+1} + 1 - a^{n+1} - (1 - a) a^n}{n+1} \] \[ = \frac{(n - 1) a^{n+1} + 1 - a^n + a^{n+1}}{n+1} \] \[ = \frac{(n a^{n+1} - a^n + 1)}{n+1} \] ### Step 4: Differentiate and Find Critical Points To minimize \( I(a) \), we differentiate with respect to \( a \): \[ \frac{dI}{da} = \frac{d}{da} \left( \frac{(n a^{n+1} - a^n + 1)}{n+1} \right) \] Using the product and chain rules, we find: \[ \frac{dI}{da} = \frac{n(n+1)a^n - n a^{n-1}}{n+1} \] Setting this equal to zero to find critical points: \[ n(n+1)a^n - n a^{n-1} = 0 \] Factoring out \( n a^{n-1} \): \[ n a^{n-1} (a - \frac{1}{2}) = 0 \] Thus, \( a = \frac{1}{2} \) is a critical point. ### Step 5: Conclusion The value of \( a \) that minimizes the integral \( I(a) \) is: \[ \boxed{\frac{1}{2}} \]

To solve the problem of minimizing the integral \( I(a) = \int_0^1 |x^n - a^n| \, dx \) for \( a \in (0, 1) \), we can follow these steps: ### Step 1: Split the Integral Since \( a \in (0, 1) \), we can split the integral at \( x = a \): \[ I(a) = \int_0^a |x^n - a^n| \, dx + \int_a^1 |x^n - a^n| \, dx \] In the interval \( [0, a] \), \( x^n < a^n \), so \( |x^n - a^n| = a^n - x^n \). In the interval \( [a, 1] \), \( x^n > a^n \), so \( |x^n - a^n| = x^n - a^n \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

Evaluate : int_(0)^(1)x(1-x)^(n)dx

If n is a positive integer then int_(0)^(1)(ln x)^(n)dx is :

For any natural number n, the value of the integral int_(0)^(sqrt(n)) [x^(2)]dx is

For any n in R^(+) , the value of the integral int_(0)^(n[x]) (x-[x])dx is

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

Compute the integrals: int_0^oof(x^n+x^(-n))logx(dx)/(1+x^2)

Compute the integrals: int_0^oof(x^n+x^(-n))logx(dx)/(1+x^2)

Evaluate int_(0)^(1)((log(1/x))^(n-1)dx .

Evaluate the following integral: int_0^1x t a n^(-1)x\ dx