Home
Class 12
MATHS
(626int(0)^(oo)e^(-x)sin^(25)xdx)/(int(0...

`(626int_(0)^(oo)e^(-x)sin^(25)xdx)/(int_(0)^(oo)e^(-x)sin^(23)xdx)` is equal to

A

300

B

625

C

600

D

1200

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \frac{626 \int_{0}^{\infty} e^{-x} \sin^{25}(x) \, dx}{\int_{0}^{\infty} e^{-x} \sin^{23}(x) \, dx} \] Let us denote: \[ I_n = \int_{0}^{\infty} e^{-x} \sin^n(x) \, dx \] Thus, we need to find: \[ \frac{626 I_{25}}{I_{23}} \] ### Step 1: Integration by Parts for \( I_{25} \) We will use integration by parts to evaluate \( I_{25} \): Let \( u = \sin^{25}(x) \) and \( dv = e^{-x} dx \). Then, we have: \[ du = 25 \sin^{24}(x) \cos(x) \, dx \] \[ v = -e^{-x} \] Applying integration by parts: \[ I_{25} = \left[ -\sin^{25}(x) e^{-x} \right]_{0}^{\infty} + \int_{0}^{\infty} e^{-x} \cdot 25 \sin^{24}(x) \cos(x) \, dx \] Evaluating the boundary term: As \( x \to \infty \), \( e^{-x} \to 0 \) and \( \sin^{25}(x) \) oscillates between -1 and 1, thus: \[ -\sin^{25}(x) e^{-x} \to 0 \] At \( x = 0 \): \[ -\sin^{25}(0) e^{-0} = 0 \] Thus, the boundary term is 0, and we have: \[ I_{25} = 25 \int_{0}^{\infty} e^{-x} \sin^{24}(x) \cos(x) \, dx \] ### Step 2: Integration by Parts for \( I_{24} \) Now we need to evaluate: \[ \int_{0}^{\infty} e^{-x} \sin^{24}(x) \cos(x) \, dx \] Let \( u = \sin^{24}(x) \) and \( dv = e^{-x} \cos(x) \, dx \). Then, we have: \[ du = 24 \sin^{23}(x) \cos(x) \, dx \] \[ v = \int e^{-x} \cos(x) \, dx = e^{-x} \left( \frac{\sin(x) + \cos(x)}{2} \right) \] Applying integration by parts again: \[ \int e^{-x} \sin^{24}(x) \cos(x) \, dx = \left[ \sin^{24}(x) \cdot e^{-x} \cdot \frac{\sin(x) + \cos(x)}{2} \right]_{0}^{\infty} - \int e^{-x} \cdot \frac{d}{dx} \left( \sin^{24}(x) \cdot \frac{\sin(x) + \cos(x)}{2} \right) \, dx \] ### Step 3: Relating \( I_{25} \) and \( I_{23} \) Continuing this process, we can derive a recurrence relation: \[ I_{n} = \frac{n}{n-1} I_{n-2} \] From this, we can express \( I_{25} \) in terms of \( I_{23} \): \[ I_{25} = \frac{25}{24} I_{23} \] ### Step 4: Substitute Back into the Original Expression Now substituting back into our original expression: \[ \frac{626 I_{25}}{I_{23}} = \frac{626 \cdot \frac{25}{24} I_{23}}{I_{23}} = \frac{626 \cdot 25}{24} \] Calculating this gives: \[ \frac{626 \cdot 25}{24} = \frac{15650}{24} = 652.0833 \] ### Final Result Thus, the final answer is: \[ \frac{626 I_{25}}{I_{23}} = 652.0833 \approx 652 \]

To solve the given problem, we need to evaluate the expression: \[ \frac{626 \int_{0}^{\infty} e^{-x} \sin^{25}(x) \, dx}{\int_{0}^{\infty} e^{-x} \sin^{23}(x) \, dx} \] Let us denote: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

1. int_(0)^(oo)e^(-x/2)dx

int_(0)^(pi/2)cos^2x sin^2xdx

inte^(4x)sin3xdx

If int_(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int_(0)^(oo) e^(-ax^(2)) dx, a gt0 , s

int_(0)^( pi)x sin^(-1)xdx

Prove the following : int_(0)^(1)e^(-x)cos^(2)xdx lt int_(0)^(1)e^(-x^(2))cos^(2)xdx

Prove that int_(0)^(oo) (sin^(2)x)/(x^(2))dx=int_(0)^(oo) (sinx)x dx

int(cot^(-1)(e^x))/e^xdx is equal to

int_(0)^(oo)e^(-x^(2))dx=(sqrtpi)/(2) then

int_(0)^(pi) sin^(4) x cos^(2)xdx =