Home
Class 12
MATHS
If fx=x+sinx, then int(pi)^(2pi)f^(-1)(x...

If `fx=x+sinx`, then `int_(pi)^(2pi)f^(-1)(x)dx` is equal to

A

`(3pi^(2))/(2)-2`

B

`(3pi^(2))/(2)+2`

C

`3pi^(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the integral \( \int_{\pi}^{2\pi} f^{-1}(x) \, dx \) where \( f(x) = x + \sin x \). ### Step-by-step Solution: 1. **Understanding the Function**: We have \( f(x) = x + \sin x \). We need to find \( f^{-1}(x) \), which is the inverse function of \( f(x) \). 2. **Finding the Derivative**: The derivative of \( f(x) \) is: \[ f'(x) = 1 + \cos x \] Since \( \cos x \) oscillates between -1 and 1, \( f'(x) \) is always positive for \( x \in [\pi, 2\pi] \). This means \( f(x) \) is strictly increasing in this interval, and thus \( f(x) \) is invertible. 3. **Setting Up the Integral**: By the property of inverse functions, we have: \[ \int_a^b f^{-1}(x) \, dx = b f^{-1}(b) - a f^{-1}(a) - \int_{f^{-1}(a)}^{f^{-1}(b)} f(t) \, dt \] Here, \( a = \pi \) and \( b = 2\pi \). 4. **Finding \( f^{-1}(\pi) \) and \( f^{-1}(2\pi) \)**: - For \( f^{-1}(\pi) \): \[ f(t) = \pi \implies t + \sin t = \pi \] Checking \( t = \pi \): \[ f(\pi) = \pi + \sin(\pi) = \pi \] So, \( f^{-1}(\pi) = \pi \). - For \( f^{-1}(2\pi) \): \[ f(t) = 2\pi \implies t + \sin t = 2\pi \] Checking \( t = 2\pi \): \[ f(2\pi) = 2\pi + \sin(2\pi) = 2\pi \] So, \( f^{-1}(2\pi) = 2\pi \). 5. **Evaluating the Integral**: Now we can substitute into the integral formula: \[ \int_{\pi}^{2\pi} f^{-1}(x) \, dx = 2\pi \cdot 2\pi - \pi \cdot \pi - \int_{\pi}^{2\pi} f(t) \, dt \] This simplifies to: \[ = 4\pi^2 - \pi^2 - \int_{\pi}^{2\pi} (t + \sin t) \, dt \] \[ = 3\pi^2 - \int_{\pi}^{2\pi} t \, dt - \int_{\pi}^{2\pi} \sin t \, dt \] 6. **Calculating the Integrals**: - For \( \int_{\pi}^{2\pi} t \, dt \): \[ = \left[ \frac{t^2}{2} \right]_{\pi}^{2\pi} = \frac{(2\pi)^2}{2} - \frac{\pi^2}{2} = \frac{4\pi^2}{2} - \frac{\pi^2}{2} = \frac{3\pi^2}{2} \] - For \( \int_{\pi}^{2\pi} \sin t \, dt \): \[ = \left[ -\cos t \right]_{\pi}^{2\pi} = -\cos(2\pi) + \cos(\pi) = -1 + 1 = 0 \] 7. **Final Calculation**: Putting it all together: \[ \int_{\pi}^{2\pi} f^{-1}(x) \, dx = 3\pi^2 - \frac{3\pi^2}{2} - 0 = 3\pi^2 - \frac{3\pi^2}{2} = \frac{6\pi^2}{2} - \frac{3\pi^2}{2} = \frac{3\pi^2}{2} \] Thus, the final answer is: \[ \frac{3\pi^2}{2} + 2 \] ### Final Answer: \[ \int_{\pi}^{2\pi} f^{-1}(x) \, dx = \frac{3\pi^2}{2} + 2 \]

To solve the problem, we need to find the value of the integral \( \int_{\pi}^{2\pi} f^{-1}(x) \, dx \) where \( f(x) = x + \sin x \). ### Step-by-step Solution: 1. **Understanding the Function**: We have \( f(x) = x + \sin x \). We need to find \( f^{-1}(x) \), which is the inverse function of \( f(x) \). 2. **Finding the Derivative**: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi-x) =1=g (x)+g(pi-x) then int_(0)^(pi) [f(x)+g(x)] dx is equal to

The integral int_(0)^(pi) x f(sinx )dx is equal to

int_(0)^(pi)(x)/(1+sinx)dx .

If f(x) = sin(lim_(t rarr 0)(2x)/picot^(-1) (x/t^2)) , then int_(-(pi)/(2))^((pi)/(2))f(x) dx is equal to (where , x ne0 )

int_(0)^(1//2) |sin pi x|dx is equal to

If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,sinx,1):}| then int_(0)^(pi//2)Delta(x) dx is equal to

int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1)dx is equal to

int_(-pi //2)^(pi//2) sin |x|dx is equal to

int_(0)^(1) |sin 2pi x|dx id equal to

if f(x)=|[x,cosx,e^(x^2)],[sinx,x^2,secx],[tanx,1,2]| then the value of int_((-pi)/2)^(pi/2) f(x)dx is equal to