Home
Class 12
MATHS
Let m,n be two positive real numbers and...

Let m,n be two positive real numbers and define `f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx` and `g(m,n)=int_(0)^(1)x^(m-1)(1-m)^(n-1)dx`.
It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0.
`int_(0)^(1)x^(m)(log_(e).(1)/(x))dx=`

A

`(f(n+1))/((m+1)^(n))`

B

`(f(n))/((m+1)^(n+1))`

C

`(f(n+1))/((m+1)^(n+1))`

D

`g(m+1),n+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral: \[ I = \int_0^1 x^m \log\left(\frac{1}{x}\right) dx \] ### Step 1: Rewrite the logarithmic term We can rewrite the logarithmic term as follows: \[ \log\left(\frac{1}{x}\right) = -\log(x) \] Thus, the integral becomes: \[ I = -\int_0^1 x^m \log(x) dx \] ### Step 2: Use integration by parts To evaluate the integral \(\int_0^1 x^m \log(x) dx\), we can use integration by parts. Let: - \(u = \log(x)\) \(\Rightarrow du = \frac{1}{x} dx\) - \(dv = x^m dx\) \(\Rightarrow v = \frac{x^{m+1}}{m+1}\) Now, applying integration by parts: \[ \int u \, dv = uv - \int v \, du \] Substituting our values: \[ \int_0^1 x^m \log(x) dx = \left[ \log(x) \cdot \frac{x^{m+1}}{m+1} \right]_0^1 - \int_0^1 \frac{x^{m+1}}{m+1} \cdot \frac{1}{x} dx \] ### Step 3: Evaluate the boundary term Evaluating the boundary term: At \(x = 1\): \[ \log(1) \cdot \frac{1^{m+1}}{m+1} = 0 \] At \(x = 0\), we need to consider the limit: \[ \lim_{x \to 0} \log(x) \cdot \frac{x^{m+1}}{m+1} \] As \(x \to 0\), \(\log(x) \to -\infty\) and \(x^{m+1} \to 0\). The product approaches \(0\) since \(x^{m+1}\) approaches \(0\) faster than \(\log(x)\) approaches \(-\infty\). Thus, the boundary term evaluates to \(0\). ### Step 4: Evaluate the integral Now we need to evaluate the remaining integral: \[ -\int_0^1 \frac{x^{m+1}}{m+1} \cdot \frac{1}{x} dx = -\frac{1}{m+1} \int_0^1 x^m dx \] The integral \(\int_0^1 x^m dx = \frac{1}{m+1}\). Thus, \[ -\frac{1}{m+1} \cdot \frac{1}{m+1} = -\frac{1}{(m+1)^2} \] ### Step 5: Combine results Putting it all together, we have: \[ I = -\left(-\frac{1}{(m+1)^2}\right) = \frac{1}{(m+1)^2} \] ### Final Result Thus, the value of the integral is: \[ \int_0^1 x^m \log\left(\frac{1}{x}\right) dx = \frac{1}{(m+1)^2} \]

To solve the given problem, we need to evaluate the integral: \[ I = \int_0^1 x^m \log\left(\frac{1}{x}\right) dx \] ### Step 1: Rewrite the logarithmic term We can rewrite the logarithmic term as follows: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0 . int_(0)^(1)(x^(m-1)+x^(n-1))/((1+x)^(m+n))dx=

If I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx , then

Evaluate : int_(0)^(1)x(1-x)^(n)dx

If I_(m)=int_(0)^(oo) e^(-x)x^(n-1)dx, "then" int_(0)^(oo) e^(-lambdax) x^(n-1)dx

Evaluate int_(0)^(1)((log(1/x))^(n-1)dx .

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -