Home
Class 12
MATHS
Let m,n be two positive real numbers and...

Let `m,n` be two positive real numbers and define `f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx` and `g(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx`. It is known that `f(n)` for `n gt 0` is finite and `g(m, n) = g(n, m)` for `m, n gt 0`. `int_(0)^(1)(x^(m-1)+x^(n-1))/((1+x)^(m+n))dx=`

A

(a) `g(n, m)`

B

(b) `g(m-1,n+1)`

C

(c) `g(m-1,n-1)`

D

(d) `g(m+1,n-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral \[ I = \int_0^1 \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} \, dx, \] we will break it down into manageable steps. ### Step 1: Split the Integral We can separate the integral into two parts: \[ I = \int_0^1 \frac{x^{m-1}}{(1+x)^{m+n}} \, dx + \int_0^1 \frac{x^{n-1}}{(1+x)^{m+n}} \, dx. \] Let's denote these two integrals as \( I_1 \) and \( I_2 \): \[ I_1 = \int_0^1 \frac{x^{m-1}}{(1+x)^{m+n}} \, dx, \] \[ I_2 = \int_0^1 \frac{x^{n-1}}{(1+x)^{m+n}} \, dx. \] ### Step 2: Evaluate \( I_2 \) using Substitution For \( I_2 \), we will use the substitution \( x = \frac{1}{y} \). Then, the limits change as follows: - When \( x = 0 \), \( y = \infty \). - When \( x = 1 \), \( y = 1 \). The differential \( dx \) becomes \( dx = -\frac{1}{y^2} \, dy \). Thus, we have: \[ I_2 = \int_\infty^1 \frac{\left(\frac{1}{y}\right)^{n-1}}{(1+\frac{1}{y})^{m+n}} \left(-\frac{1}{y^2}\right) \, dy. \] Rearranging gives: \[ I_2 = \int_1^\infty \frac{y^{-(n-1)}}{\left(\frac{y+1}{y}\right)^{m+n}} \cdot \frac{1}{y^2} \, dy = \int_1^\infty \frac{y^{-(n-1)}}{\left(\frac{y+1}{y}\right)^{m+n}} \cdot \frac{1}{y^2} \, dy. \] This simplifies to: \[ I_2 = \int_1^\infty \frac{y^{-(n+1)}}{(y+1)^{m+n}} \, dy. \] ### Step 3: Combine \( I_1 \) and \( I_2 \) Now we can combine \( I_1 \) and \( I_2 \): \[ I = I_1 + I_2 = \int_0^1 \frac{x^{m-1}}{(1+x)^{m+n}} \, dx + \int_1^\infty \frac{y^{-(n+1)}}{(y+1)^{m+n}} \, dy. \] ### Step 4: Change of Variable in \( I_2 \) Notice that \( I_2 \) can be rewritten with a change of variable \( y = x \): \[ I_2 = \int_0^\infty \frac{x^{n-1}}{(1+x)^{m+n}} \, dx. \] ### Step 5: Final Expression Thus, we have: \[ I = \int_0^1 \frac{x^{m-1}}{(1+x)^{m+n}} \, dx + \int_0^\infty \frac{x^{n-1}}{(1+x)^{m+n}} \, dx. \] Using the symmetry property \( g(m, n) = g(n, m) \): \[ I = g(m, n). \] ### Conclusion The final result is: \[ I = g(m, n). \]

To solve the given integral \[ I = \int_0^1 \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} \, dx, \] we will break it down into manageable steps. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-m)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0. int_(0)^(1)x^(m)(log_(e).(1)/(x))dx=

If I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx , then

Evaluate : int_(0)^(1)x(1-x)^(n)dx

If I_(m)=int_(0)^(oo) e^(-x)x^(n-1)dx, "then" int_(0)^(oo) e^(-lambdax) x^(n-1)dx

Evaluate int_(0)^(1)((log(1/x))^(n-1)dx .

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

If n gt 1 . Evaluate int_(0)^(oo)(dx)/((x+sqrt(1+x^(2)))^(n))