Home
Class 12
MATHS
Let 0ltaltblt(pi)/(2).Iff(x)= |{:(tanx,t...

Let `0ltaltblt(pi)/(2).Iff(x)= |{:(tanx,tana, tanb),(sinx,sina,sinb),(cosx,cosa,cosb):}|,then` find the minimum possible number of roots of f'(x) = 0 in (a,b).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) given by the determinant: \[ f(x) = \begin{vmatrix} \tan x & \sin a & \cos a \\ \tan a & \sin a & \cos a \\ \tan b & \sin b & \cos b \end{vmatrix} \] where \( 0 < a < b < \frac{\pi}{2} \). ### Step 1: Evaluate \( f(a) \) and \( f(b) \) First, we will evaluate \( f(a) \) and \( f(b) \): 1. **Calculate \( f(a) \)**: \[ f(a) = \begin{vmatrix} \tan a & \sin a & \cos a \\ \tan a & \sin a & \cos a \\ \tan b & \sin b & \cos b \end{vmatrix} \] Since the first two rows are identical, the value of the determinant is zero: \[ f(a) = 0 \] 2. **Calculate \( f(b) \)**: \[ f(b) = \begin{vmatrix} \tan b & \sin a & \cos a \\ \tan a & \sin a & \cos a \\ \tan b & \sin b & \cos b \end{vmatrix} \] Again, the first and third rows are identical, hence: \[ f(b) = 0 \] ### Step 2: Apply Rolle's Theorem Since \( f(a) = 0 \) and \( f(b) = 0 \), we can apply Rolle's Theorem. This theorem states that if a function is continuous on the closed interval \([a, b]\) and differentiable on the open interval \((a, b)\), and if the function takes the same value at the endpoints, then there exists at least one \( c \) in \((a, b)\) such that: \[ f'(c) = 0 \] ### Step 3: Conclusion From the application of Rolle's Theorem, we conclude that there exists at least one point \( c \) in the interval \((a, b)\) such that: \[ f'(c) = 0 \] Thus, the minimum possible number of roots of \( f'(x) = 0 \) in the interval \((a, b)\) is: \[ \boxed{1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 5.8|9 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise EXERCISES|57 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 5.6|5 Videos
  • 3D COORDINATION SYSTEM

    CENGAGE ENGLISH|Exercise DPP 3.1|11 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|142 Videos

Similar Questions

Explore conceptually related problems

Let 0ltaltbltpi/2. \ If \ f(x)=|[tanx,tana,tanb],[sinx,sina,sinb],[cosx,cosa,cosb]| , then find the minimum possible number of roots of f^(prime)(x)=0 in (a , b) .

If f(x) =|{:(sinx,cosx,sinx),(cosx,-sinx,cosx),(x,1,1):}| find the value of 2[f'(0)]+[f'(1)]^(2)

Find the number of solutions of tanx + secx = 2cosx in [0,2pi]

If |(cos(A+B),-sin(A+B),cos2B),(sinA,cosA,sinB),(-cosA,sinA,cosB)|=0 then B =

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

Find the number of roots of the equation tan(x+pi/6)=2tanx ,forx in (0,3pi)dot

Find the number of roots of the equation tan(x+pi/6)=2tanx ,forx in (0,3pi)dot

Find the maximum and minimum values of f(x)=sinx+1/2cos2x in [0,\ pi/2] .

Let f(x)=sinx+cosx+tanx+sin^(-1)x+cos^(-1)x+tan^(-1)xdot Then find the maximum and minimum values of f(x)dot

Let f(x)=sinx+cosx+tanx+sin^(-1)x+cos^(-1)x+tan^(-1)xdot Then find the maximum and minimum values of f(x)dot