Home
Class 12
MATHS
Let the parabolas y=x(c-x)a n dy=x^2+a x...

Let the parabolas `y=x(c-x)a n dy=x^2+a x+b` touch each other at the point (1,0). Then (a) `a+b+c=0` (b) `a+b=2` (c) `b-c=1` (d) `a+c=-2`

A

`a+b+c=0`

B

`a+b=2`

C

`b-c=1`

D

`a+c=-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \( a \), \( b \), and \( c \) such that the two parabolas \( y = x(c - x) \) and \( y = x^2 + ax + b \) touch each other at the point \( (1, 0) \). ### Step 1: Find the slopes of both curves at the point of tangency 1. **Differentiate the first curve**: \[ y_1 = x(c - x) \implies \frac{dy_1}{dx} = c - 2x \] At the point \( (1, 0) \): \[ \frac{dy_1}{dx} \bigg|_{x=1} = c - 2 \] 2. **Differentiate the second curve**: \[ y_2 = x^2 + ax + b \implies \frac{dy_2}{dx} = 2x + a \] At the point \( (1, 0) \): \[ \frac{dy_2}{dx} \bigg|_{x=1} = 2 + a \] ### Step 2: Set the slopes equal at the point of tangency Since the curves touch each other at \( (1, 0) \), their slopes must be equal: \[ c - 2 = 2 + a \quad \text{(Equation 1)} \] ### Step 3: Set the equations equal at the point of tangency Since both curves pass through the point \( (1, 0) \): \[ 0 = 1(c - 1) \quad \text{(from the first curve)} \] This simplifies to: \[ c - 1 = 0 \implies c = 1 \quad \text{(Equation 2)} \] ### Step 4: Substitute \( c \) into Equation 1 Substituting \( c = 1 \) into Equation 1: \[ 1 - 2 = 2 + a \implies -1 = 2 + a \implies a = -3 \quad \text{(Equation 3)} \] ### Step 5: Substitute \( a \) and \( c \) into the equation for the second curve Now, we substitute \( a = -3 \) and \( c = 1 \) into the equation for the point \( (1, 0) \) in the second curve: \[ 0 = 1^2 + (-3)(1) + b \implies 0 = 1 - 3 + b \implies b = 2 \quad \text{(Equation 4)} \] ### Step 6: Summarize the values We have found: - \( a = -3 \) - \( b = 2 \) - \( c = 1 \) ### Step 7: Check the given options Now we check the options: 1. **Option (a)**: \( a + b + c = 0 \) \[ -3 + 2 + 1 = 0 \quad \text{(True)} \] 2. **Option (b)**: \( a + b = 2 \) \[ -3 + 2 = -1 \quad \text{(False)} \] 3. **Option (c)**: \( b - c = 1 \) \[ 2 - 1 = 1 \quad \text{(True)} \] 4. **Option (d)**: \( a + c = -2 \) \[ -3 + 1 = -2 \quad \text{(True)} \] ### Conclusion The correct statements are: - (a) \( a + b + c = 0 \) - (c) \( b - c = 1 \) - (d) \( a + c = -2 \)
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|8 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE TYPE|19 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise EXERCISES|57 Videos
  • 3D COORDINATION SYSTEM

    CENGAGE ENGLISH|Exercise DPP 3.1|11 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|142 Videos

Similar Questions

Explore conceptually related problems

Let the parabolas y=x(c-x)a n dy=x^2+a x+b touch each other at the point (1,0). Then a+b+c=0 a+b=2 b-c=1 (d) a+c=-2

Find the value of a ,b ,c such that curves y=x^2+a x+ba n dy=c x-x^2 will touch each other at the point (1,0) then (a+b+c)=

If the line y=x touches the curve y=x^2+b x+c at a point (1,\ 1) then (a) b=1,\ c=2 (b) b=-1,\ c=1 (c) b=2,\ c=1 (d) b=-2,\ c=1

If the circles x^2+y^2+2a x+c=0a n dx^2+y^2+2b y+c=0 touch each other, then (a) 1/(a^2)+1/(b^2)=1/c (b) 1/(a^2)+1/(b^2)=1/(c^2) (c) a+b=2c (d) 1/a+1/b=2/c

If the circles x^2+y^2+2ax+c=0 and x^2+y^2+2by+c=0 touch each other, then find the relation between a, b and c .

If the polynomial f(x)=a x^3+b x-c is divisible by the polynomial g(x)=x^2+b x+c , then a b= (a) 1 (b) 1/c (c) -1 (d) -1/c

If the solution set of the inequaiton (x+4)(x-1)(x-3)(x+1)<0 is x in (a , b)uu(c , d) then (a) a+b+c+d=1 (b) a+b+c+d=2 (c) a b c d=12 (d) a b+c d=7

If a and b are roots of the equation x^2+a x+b=0 , then a+b= (a) 1 (b) 2 (c) -2 (d) -1

Let f(x)=a x^2+b x+cdot Consider the following diagram. Then Fig c 0 a+b-c >0 a b c<0

If a b c = 0, then ({(x^a)^b}^c)/({(x^b)^c}^a) = (a)3 (b) 0 (c) -1 (d) 1