Home
Class 12
MATHS
The angle formed by the positive y-a xi ...

The angle formed by the positive `y-a xi s` and the tangent to `y=x^2+4x-17a t(5/2,-3/4)` is `tan^(-1)(9)` (b) `pi/2-tan^(-1)(9)` `pi/2+tan^(-1)(9)` (d) none of these

A

`tan^(-1)(9)`

B

`(pi)/(2)-tan^(-1)(9)`

C

`(pi)/(2)+tan^(-1)(9)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B, C
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|8 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE TYPE|19 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise EXERCISES|57 Videos
  • 3D COORDINATION SYSTEM

    CENGAGE ENGLISH|Exercise DPP 3.1|11 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|142 Videos

Similar Questions

Explore conceptually related problems

The angle formed by the positive y - axis and the tangent to y=x^2+4x-17 at (5/2,-3/4) is: (a) tan^(-1)(9) (b) pi/2-tan^(-1)(9) pi/2+tan^(-1)(9) (d) none of these

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to :

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

The angle between the tangents to the curves y=x^2a n dx=y^2a t(1,1) is cos^(-1)(4/5) (b) sin^(-1)(3/5) tan^(-1)(3/4) (d) tan^(-1)(1/3)

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=

The angle between the normals of ellipse 4x^2 + y^2 = 5 , at the intersection of 2x+y=3 and the ellipse is (A) tan^(-1) (3/5) (B) tan^(-1) (3/4) (C) tan^(-1) (4/3) (D) tan^(-1) (4/5)