Home
Class 12
MATHS
Which of the following pair(s) of curves...

Which of the following pair(s) of curves is/are ortogonal? (a) `y^(2)=4ax,y=e^(-x//2a)` (b) `y^(2)=4ax,x^(2)=4ay at (0,0)` (c) `xy=a^(2),x^(2)-y^(2)=b^(2)` (d) `y=ax,x^(2)+y^(2)=c^(2)`

A

`y^(2)=4ax,y=e^(-x//2a)`

B

`y^(2)=4ax,x^(2)=4ay at (0,0)`

C

`xy=a^(2),x^(2)-y^(2)=b^(2)`

D

`y=ax,x^(2)+y^(2)=c^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|8 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE TYPE|19 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise EXERCISES|57 Videos
  • 3D COORDINATION SYSTEM

    CENGAGE ENGLISH|Exercise DPP 3.1|11 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|142 Videos

Similar Questions

Explore conceptually related problems

Which of the following pairs(s) of curves is/are orthogonal? (a) y^2 = 4 a x ; y = e^ (-x/ (2 a)) (b) y^2 = 4 a x ; x^2 = 4ay (c) xy = a^2 ; x^2-y^2 = b^2 (d) y = a x ; x^2 + y^2 = c^2

Which of the following pair(s) of curves is/are orthogonal? y^2=4a x ; y=e^(-x/(2a)) y^2=4a x ; x^2=4a ya t(0,0) x y=a^2; x^2-y^2=b^2 y=a x ;x^2+y^2=c^2

Which one of the following curves cut the parabola at right angles? x^2+y^2=a^2 (b) y=e^(-x//2a) y=a x (d) x^2=4a y

Find the number of possible common tangents of following pairs of circles (i) x^(2)+y^(2)-14x+6y+33=0 x^(2)+y^(2)+30x-2y+1=0 (ii) x^(2)+y^(2)+6x+6y+14=0 x^(2)+y^(2)-2x-4y-4=0 (iii) x^(2)+y^(2)-4x-2y+1=0 x^(2)+y^(2)-6x-4y+4=0 (iv) x^(2)+y^(2)-4x+2y-4=0 x^(2)+y^(2)+2x-6y+6=0 (v) x^(2)+y^(2)+4x-6y-3=0 x^(2)+y^(2)+4x-2y+4=0

For which of the following, y can be a function of x, (x in R, y in R) ? {:((i) (x-h)^(2)+(y-k)^(2)=r^(2),(ii)y^(2)=4ax),((iii) x^(4)=y^(2),(iv) x^(6)=y^(3)),((v) 3y=(log x)^(2),""):}

If a circle passes through the point (a, b) and cuts the circle x^2 + y^2 = 4 orthogonally, then the locus of its centre is (a) 2ax+2by-(a^(2)+b^(2)+4)=0 (b) 2ax+2by-(a^(2)-b^(2)+k^(2))=0 (c) x^(2)+y^(2)-3ax-4by+(a^(2)+b^(2)-k^(2))=0 (d) x^(2)+y^(2)-2ax-3by+(a^(2)-b^(2)-k^(2))=0

Find the centre and radius of each of the following circle : (i) x^(2)+y^(2)+4x-4y+1=0 (ii) 2x^(2)+2y^(2)-6x+6y+1=0 (iii) 2x^(2)+2y^(2)=3k(x+k) (iv) 3x^(2)+3y^(2)-5x-6y+4=0 (v) x^(2)+y^(2)-2ax-2by+a^(2)=0

The solution of the differential equation (dy)/(dx)+(x(x^(2)+3y^(2)))/(y(y^(2)+3x^(2)))=0 is (a) x^(4)+y^(4)+x^(2)y^(2)=c (b) x^(4)+y^(4)+3x^(2)y^(2)=c (c) x^(4)+y^(4)+6x^(2)y^(2)=c (d) x^(4)+y^(4)+9x^(2)y^(2)=c

Factorize each of the following algebraic expressions: (1) (x-y)^2+(x-y) (2) 6(a+2b)-4(a+2b)^2 (3) a(x-y)+2b(y-x)+c(x-y)^2 (4) -4\ (x-2y)^2+8(x-2y)

If (a^(2) + b^(2)) (x^(2) + y^(2)) = (ax + by)^(2) , prove that : (a)/(x) = (b)/(y) .