Home
Class 12
MATHS
Test the continnuity of f(x) at x=0 ...

Test the continnuity of f(x) at x=0 if
`f(x) ={{:((x+1)^(2-((1)/(|x|)+(1)/(x))), x ne 0 ),( 1,x = 0):}.`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

On the interval I=[-2,2] , the function f(x)={{:(,(x+1)e^(-((1)/(|x|)+(1)/(x))),x ne 0),(,0,x=0):}

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

Let f (x) = {{:(e ^((1)/(x ^(2)))sin ""(1)/(x), x ne0),(lamda, x =(0):}, then f '(0)

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x) = {{:(|x|sin\ (1)/(x-a),if x ne 0),(0, if x =a):} at x = a

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is