Home
Class 12
MATHS
If f : R rarr R is a function defined by...

If `f : R rarr R` is a function defined by `f(x) = [x] cos ((2x -1)/(2))pi`, where [x] denotes the greatest integer function, then f is

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

Let f : [2, 4) rarr [1, 3) be a function defined by f(x) = x - [(x)/(2)] (where [.] denotes the greatest integer function). Then f^(-1) equals

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then