Home
Class 12
MATHS
Let f(x) =e^(x-1)-ax^(2)+b and g(x)={{:(...

Let `f(x) =e^(x-1)-ax^(2)+b` and `g(x)={{:(e^(x-1),xle1),(x^(2)+1,xgt1):},` then find the values of `a` and `b` such that `f(x) xx g(x)` is differentiable at `x=1`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

find the values of a and b , such that f(x) ={ax^2+1,xle1 and x^2+ax+b , x gt1 is differentiable at x=1

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

if f(x) = {{:(x+2",",xle-1),(cx^(2)",",xgt-1):}, then find c when lim(xto-1)f(x) exists.

If f(x)={{:(a+bx,xlt1),(4,x=1),(b-ax,xgt1):} and underset(xrarr1)f(x)=f(1) , then find the values of 'a' and 'b '

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to

Let f(x)=x^2+xg^2(1)+g^''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then find f(x) and g(x).

If f(x)={(1-|x| ,, |x|lt=1),(0 ,, |x|>1):} and g(x)=f(x-1)+f(x+1), then find the value of int_(-3)^5g(x)dx .

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(1) is

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x)={{:(ax^(2)+1",",xgt1),(x+a",",xle1):} is derivable at x=1 , then the value of a is