Home
Class 12
MATHS
The set of points where x^(2)|x| is thri...

The set of points where `x^(2)|x|` is thrice differentiable, is

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The set of points where , f(x) = x|x| is twice differentiable is

The set of points where f(x)=x/(1+|x|) is differentiable is

Let f(x) = {x-1)^2 sin(1/(x-1)-|x| ,if x!=1 and -1, if x=1 1valued function. Then, the set of pointsf, where f(x) is not differentiable, is .... .

The number of points where f(x)=|x^(2)-3|x|-4| is non - differentiable is

Let f(x)="min"{sqrt(4-x^(2)),sqrt(1+x^(2))}AA,x in [-2, 2] then the number of points where f(x) is non - differentiable is

The set of points where the function f(x)=x|x| is differentiable is (-oo,oo) (b) (-oo,0)uu(0,oo) (0,oo) (d) [0,oo)

The set of points where the function f(x)=x|x| is differentiable is (a) (-oo,\ oo) (b) (-oo,\ 0)uu(0,\ oo) (c) (0,\ oo) (d) [0,\ oo]

Consider the function f(x)=min{|x^(2)-9|,|x^(2)-1|} , then the number of points where f(x) is non - differentiable is/are

Consider the function f(x)=min{|x^(2)-4|,|x^(2)-1|} , then the number of points where f(x) is non - differentiable is/are

If f(x)=max{tanx, sin x, cos x} where x in [-(pi)/(2),(3pi)/(2)) then the number of points, where f(x) is non -differentiable, is