Home
Class 12
MATHS
The function f( x ) = [x] + sqrt{{ x}} ...

The function `f( x ) = [x] + sqrt{{ x}}` , where [.] denotes the greatest Integer function and {.} denotes the fractional part function respectively, is discontinuous at

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

Solve 2[x]=x+{x},where [.] and {} denote the greatest integer function and the fractional part function, respectively.

Solve 1/[x]+1/([2x])= {x}+1/3 where [.] denotes the greatest integers function and{.} denotes fractional part function.

The function f(x) = {x} sin (pi [x]) , where [.] denotes the greatest integer function and {.} is the fraction part function , is discontinuous at

f(x)=[x^(2)]-{x}^(2), where [.] and {.} denote the greatest integer function and the fractional part function , respectively , is

Solve 2[x]=x+{x},w h r e[]a n d{} denote the greatest integer function and the fractional part function, respectively.

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

The function f(x)={x} , where [x] denotes the greatest integer function , is continuous at

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function