Home
Class 12
MATHS
f'(0) = lim(n->oo) nf(1/n) and f(0)=0 U...

`f'(0) = lim_(n->oo) nf(1/n) and f(0)=0` Using this, find `lim_(n->oo)((n+1)(2/pi)cos^(- 1)(1/n)-n)),|cos^(-1)1/n|

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) nsin(1/n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

lim_(n rarr oo)2^(1/n)

lim_(n->oo)2^(n-1)sin(a/2^n)

7. lim_(n->oo) (2^(1/n)-1)/(2^(1/n)+1)

The value of lim_(n->oo) n^(1/n)

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

If |cos^-1(1)/(n)|lt (pi)/(2) , then lim_(n to oo) {(n+1)(2)/(pi)cos^-1.(1)/(n)-n}

lim_(x->oo)(1-x+x.e^(1/n))^n