Home
Class 12
MATHS
f(x)=[2x]sin3pixa n df^(prime)(k^(prime)...

`f(x)=[2x]sin3pixa n df^(prime)(k^(prime))=lambdakpi(-1)^k` (where [.] denotes the greatest integer function and `k in N),` then find the value of `lambda` .

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[2x]sin3pix then prove that f'(k^(+))=6kpi(-1)^(k) , (where [.] denotes the greatest integer function and k in N).

If f(x)=[2x]sin3pix then prove that f'(k^(+))=6kpi(-1)^(k) , (where [.] denotes the greatest integer function and k in N).

If f(x)=[2x]sin3pix then prove that f'(k^(+))=6kpi(-1)^(k) , (where [.] denotes the greatest integer function and k in N).

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If [dot] denotes the greatest integer function, then find the value of lim_(x->0) ([x]+[2x]++[n x])/(n^2)