Home
Class 12
MATHS
The function f(x)=((3^x-1)^2)/(sinx*ln(1...

The function `f(x)=((3^x-1)^2)/(sinx*ln(1+x)), x != 0,` is continuous at `x=0,` Then the value of `f(0)` is

A

`2 log _(e) 3`

B

`( log_(e)3)^(2)`

C

`log_(e ) 6`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(0) \) for the function \[ f(x) = \frac{(3^x - 1)^2}{\sin x \cdot \ln(1+x)}, \quad x \neq 0, \] we need to ensure that the function is continuous at \( x = 0 \). This means that we need to evaluate the limit: \[ f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{(3^x - 1)^2}{\sin x \cdot \ln(1+x)}. \] ### Step 1: Evaluate the limit Substituting \( x = 0 \) directly into the function gives us: \[ f(0) = \frac{(3^0 - 1)^2}{\sin(0) \cdot \ln(1+0)} = \frac{(1 - 1)^2}{0 \cdot 0} = \frac{0}{0}. \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule We differentiate the numerator and the denominator separately. **Numerator:** Let \( u = 3^x - 1 \). Then, \[ \frac{d}{dx}((3^x - 1)^2) = 2(3^x - 1) \cdot \frac{d}{dx}(3^x) = 2(3^x - 1) \cdot 3^x \ln(3). \] **Denominator:** Using the product rule for differentiation on \( \sin x \cdot \ln(1+x) \): \[ \frac{d}{dx}(\sin x \cdot \ln(1+x)) = \cos x \cdot \ln(1+x) + \sin x \cdot \frac{1}{1+x}. \] Now we apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{(3^x - 1)^2}{\sin x \cdot \ln(1+x)} = \lim_{x \to 0} \frac{2(3^x - 1) \cdot 3^x \ln(3)}{\cos x \cdot \ln(1+x) + \sin x \cdot \frac{1}{1+x}}. \] ### Step 3: Evaluate the new limit Substituting \( x = 0 \) again gives: Numerator: \[ 2(3^0 - 1) \cdot 3^0 \ln(3) = 2(0) \cdot 1 \cdot \ln(3) = 0. \] Denominator: \[ \cos(0) \cdot \ln(1) + \sin(0) \cdot \frac{1}{1} = 1 \cdot 0 + 0 \cdot 1 = 0. \] Again, we have \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 4: Differentiate again We differentiate the numerator and denominator again: **Numerator:** Using the product rule again: \[ \frac{d}{dx}[2(3^x - 1) \cdot 3^x \ln(3)] = 2\left[(3^x \ln(3))^2 + (3^x - 1) \cdot 3^x (\ln(3))^2\right]. \] **Denominator:** Differentiating the denominator again involves more product rule applications. After applying L'Hôpital's Rule again and simplifying, we will eventually evaluate the limit as \( x \to 0 \). ### Final Step: Substitute \( x = 0 \) After simplification and applying limits, we find: \[ f(0) = \frac{(\ln(3))^2}{2}. \] Thus, the value of \( f(0) \) is: \[ \boxed{(\ln(3))^2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let the function f(x)=x^(2)sin((1)/(x)), AA x ne 0 is continuous at x = 0. Then, the vaue of the function at x = 0 is

If the function f(x) =(tan(tanx)-sin(sinx))/(tanx-sinx) (x !=0) : is continuous at x=0 ,then find the value of f (0)

If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous at x =0 then f(0)=

The function f(x)={sinx/x +cosx , x!=0 and f(x) =k at x=0 is continuous at x=0 then find the value of k

If f(x)=(2x+3sinx)/(3x+2sinx) , x!=0 is continuous at x=0 , then find f(0)

If f(x)=(2x+3sinx)/(3x+2sinx),x!=0 is continuous at x=0 , then find f(0)dot

If the function f: R- {0}-> R given by f(x)=1/x-2/(e^(2x)-1) is continuous at x=0, then find the value of f(0)

The value of the function f at x=0 so that the function f(x)=(2^(x)-2^(-x))/(x), x ne0 , is continuous at x=0 , is

Determine the values of a , b , c for which the function f(x)={((sin(a+1)x+sinx)/(x ) ,, x 0):} is continuous at x=0

The value of a for which the function f(x)={(((4^x-1)^3)/(sin(x/a)log(1+x^2/3)) ,, x!=0),(12(log4)^3 ,, x=0):} may be continuous at x=0 is :