Home
Class 12
MATHS
if f(x) ={{:((8^(x)-4^(x)-2^(x)+1)/(x^(...

`if f(x) ={{:((8^(x)-4^(x)-2^(x)+1)/(x^(2)),xgt0),( x^(2) , x le 0):}`
is continuous at x=0 , then the value of `lamda ` is

A

`4 log _(e)2`

B

`2log_(e)2`

C

`log_(e)2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( \lambda \) for the function \[ f(x) = \begin{cases} \frac{8^x - 4^x - 2^x + 1}{x^2} & \text{if } x > 0 \\ x^2 + \lambda \ln 4 & \text{if } x \leq 0 \end{cases} \] to be continuous at \( x = 0 \), we need to ensure that the left-hand limit as \( x \) approaches 0 from the left is equal to the right-hand limit as \( x \) approaches 0 from the right, and also equal to \( f(0) \). ### Step 1: Find \( f(0) \) For \( x \leq 0 \): \[ f(0) = 0^2 + \lambda \ln 4 = \lambda \ln 4 \] ### Step 2: Find the right-hand limit \( f(0^+) \) For \( x > 0 \): \[ f(0^+) = \lim_{x \to 0^+} \frac{8^x - 4^x - 2^x + 1}{x^2} \] Substituting \( x = 0 \): \[ = \frac{8^0 - 4^0 - 2^0 + 1}{0^2} = \frac{1 - 1 - 1 + 1}{0} = \frac{0}{0} \] This is an indeterminate form, so we apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule Differentiate the numerator and denominator: - The derivative of the numerator \( 8^x - 4^x - 2^x + 1 \) is: \[ 8^x \ln 8 - 4^x \ln 4 - 2^x \ln 2 \] - The derivative of the denominator \( x^2 \) is: \[ 2x \] Thus, we have: \[ f(0^+) = \lim_{x \to 0^+} \frac{8^x \ln 8 - 4^x \ln 4 - 2^x \ln 2}{2x} \] Substituting \( x = 0 \): \[ = \frac{8^0 \ln 8 - 4^0 \ln 4 - 2^0 \ln 2}{2 \cdot 0} = \frac{\ln 8 - \ln 4 - \ln 2}{0} = \frac{0}{0} \] Again, we apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule Again Differentiate again: - The second derivative of the numerator is: \[ 8^x (\ln 8)^2 - 4^x (\ln 4)^2 - 2^x (\ln 2)^2 \] - The second derivative of the denominator is: \[ 2 \] Thus, we have: \[ f(0^+) = \lim_{x \to 0^+} \frac{8^x (\ln 8)^2 - 4^x (\ln 4)^2 - 2^x (\ln 2)^2}{2} \] Substituting \( x = 0 \): \[ = \frac{1 \cdot (\ln 8)^2 - 1 \cdot (\ln 4)^2 - 1 \cdot (\ln 2)^2}{2} \] ### Step 5: Simplify the expression Using the properties of logarithms: \[ \ln 8 = \ln(2^3) = 3 \ln 2, \quad \ln 4 = \ln(2^2) = 2 \ln 2 \] Thus, \[ = \frac{(3 \ln 2)^2 - (2 \ln 2)^2 - (\ln 2)^2}{2} = \frac{9 (\ln 2)^2 - 4 (\ln 2)^2 - (\ln 2)^2}{2} = \frac{4 (\ln 2)^2}{2} = 2 (\ln 2)^2 \] ### Step 6: Set the limits equal for continuity For continuity at \( x = 0 \): \[ \lambda \ln 4 = 2 (\ln 2)^2 \] ### Step 7: Solve for \( \lambda \) Using \( \ln 4 = 2 \ln 2 \): \[ \lambda (2 \ln 2) = 2 (\ln 2)^2 \] Dividing both sides by \( 2 \ln 2 \) (assuming \( \ln 2 \neq 0 \)): \[ \lambda = \frac{2 (\ln 2)^2}{2 \ln 2} = \ln 2 \] ### Final Answer Thus, the value of \( \lambda \) is: \[ \lambda = \ln 2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = (x-e^(x) + cos 2x)/(x^(2)), x ne 0 is continuous at x = 0, then

If f(x)={{:((a+bcosx+csinx)/x^2,xgt0), (9,xge0):}} is continuous at x = 0 , then the value of (|a|+|b|)/5 is

If f(x){{:((sqrt(4+x)-2)/(x)",",xne0),(k,","x=0):} is continuous at x =0 , then the value of k is

If f(x) = {{:((sqrt(4+ax)-sqrt(4-ax))/x,-1 le x lt 0),((3x+2)/(x-8), 0 le x le 1):} continuous in [-1,1] , then the value of a is

Consider f(x) = {{:((8^(x) - 4^(x) - 2^(x) + 1)/(x^(2))",",x gt 0),(e^(x)sin x + pi x + k log 4",",x lt 0):} Then, f(0) so that f(x) is continuous at x = 0, is

Let f(x)={((alpha cotx)/x+beta/x^2 ,, 0<|x|lt=1),(1/3 ,, x=0):} . If f(x) is continuous at x=0 then the value of alpha^2+beta^2 is

The function f(x)=((3^x-1)^2)/(sinx*ln(1+x)), x != 0, is continuous at x=0, Then the value of f(0) is

If f(x)={(cos^2x-sin^2x-1)/(sqrt(x^2+1)-1), x!=0,and f(x)=k , x=0" is continuous at "x=0,"find " k

If f(x)={{:((sin2x)/(cx)+(x)/((sqrt(x+a^(2))-a)),,,xne 0"," (alt0)),(b,,,x=0","(bne0)):} and f(x) is continuous at x = 0, then the value of bc is equal to

If f(x)={(sin((2x^2)/a)+cos((3x)/b))^((ab)/x^2),x!=0, and e^3, x=0 is continuous at x=0AAb in R then minimum value of a is a. -1//8 b. -1//4 c. -1//2 d. 0