Home
Class 12
MATHS
If f(x)=(x^2-bx+25)/(x^2-7x+10) for x!=5...

If `f(x)=(x^2-bx+25)/(x^2-7x+10)` for `x!=5` and `f` is continuous at `x=5` then `f(5)=`

A

0

B

5

C

10

D

25

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) = \frac{x^2 - bx + 25}{x^2 - 7x + 10} \) is continuous at \( x = 5 \). This means that the limit of \( f(x) \) as \( x \) approaches 5 must equal \( f(5) \). ### Step-by-Step Solution: 1. **Identify the function and the point of continuity**: We have: \[ f(x) = \frac{x^2 - bx + 25}{x^2 - 7x + 10} \] We need to check the continuity at \( x = 5 \). 2. **Find the limit as \( x \) approaches 5**: We need to compute: \[ \lim_{x \to 5} f(x) = \lim_{x \to 5} \frac{x^2 - bx + 25}{x^2 - 7x + 10} \] 3. **Factor the denominator**: The denominator can be factored as: \[ x^2 - 7x + 10 = (x - 2)(x - 5) \] Thus, we rewrite \( f(x) \): \[ f(x) = \frac{x^2 - bx + 25}{(x - 2)(x - 5)} \] 4. **Evaluate the denominator at \( x = 5 \)**: At \( x = 5 \), the denominator becomes: \[ (5 - 2)(5 - 5) = 3 \cdot 0 = 0 \] Since the denominator is zero, the numerator must also be zero for the limit to exist. 5. **Set the numerator to zero at \( x = 5 \)**: We need: \[ 5^2 - 5b + 25 = 0 \] Simplifying this gives: \[ 25 - 5b + 25 = 0 \implies 50 - 5b = 0 \implies 5b = 50 \implies b = 10 \] 6. **Substituting \( b \) back into the function**: Now we substitute \( b = 10 \) into the function: \[ f(x) = \frac{x^2 - 10x + 25}{(x - 2)(x - 5)} \] The numerator can be factored as: \[ x^2 - 10x + 25 = (x - 5)^2 \] Thus, we have: \[ f(x) = \frac{(x - 5)^2}{(x - 2)(x - 5)} \] 7. **Cancel the common factor**: Canceling \( (x - 5) \) from the numerator and denominator gives: \[ f(x) = \frac{x - 5}{x - 2} \quad \text{for } x \neq 5 \] 8. **Evaluate the limit as \( x \) approaches 5**: Now we can find the limit: \[ \lim_{x \to 5} f(x) = \lim_{x \to 5} \frac{x - 5}{x - 2} = \frac{5 - 5}{5 - 2} = \frac{0}{3} = 0 \] 9. **Conclusion**: Since \( f \) is continuous at \( x = 5 \), we have: \[ f(5) = 0 \] ### Final Answer: \[ f(5) = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(sin3x+Asin2x+Bsinx)/(x^(5)) for x!=0 is continuous at x=0 , then A+B+f(0) is

If f(x)=(sin3pix+Asin5pix+Bsinpix)/((x-1)^(5)) for x!=1 is continuous at x=1 and f(x)=(p^(2)pi^(5))/((p+1)) , then evaluate p.

If f(x)=(2x)/(5)+(7)/(3), f^(-1)(x)=

If f(x)= x^2+7x+10 then f'(2) =?

If f(x)=7x^(4)-2x^(3)-8x-5 find f(-1)

Let f(x) = ((x - 1))/((2x^(2) - 7x + 5)) then

Show that the function f given by f(x) ={{:( x^(2)+5, if x ne 0), (3, if x = 0):} is not continuous at x=0

If f(x)=|x^2-5x+6|, then f'(x) equals

If f(x)=|x^2-5x+6|, then f'(x) equals

If f(x) = 9x^(2) + 5x - 8 , then f(-2) = ?