Home
Class 12
MATHS
if f(x) ={{:((1-|x|)/(1+x),xne-1),(1, x=...

`if f(x) ={{:((1-|x|)/(1+x),xne-1),(1, x=-1):}`then f([2x]) , where [.] represents the greatest integer function , is

A

discontinuous at x=-1

B

continuous at x=0

C

continuous at x=1/2

D

continuous at x=1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined as: \[ f(x) = \begin{cases} \frac{1 - |x|}{1 + x} & \text{if } x \neq -1 \\ 1 & \text{if } x = -1 \end{cases} \] We need to find \( f([\cdot]) \) where \( [2x] \) represents the greatest integer function (GIF) applied to \( 2x \). ### Step 1: Analyze the function \( f(x) \) 1. **For \( x < 0 \)**: - The function simplifies to \( f(x) = 1 \). 2. **For \( x \geq 0 \)**: - The modulus function \( |x| = x \), so: \[ f(x) = \frac{1 - x}{1 + x} \] ### Step 2: Determine \( f([\cdot]) \) for \( [2x] \) We will now evaluate \( f([\cdot]) \) based on the value of \( [2x] \). #### Case 1: \( x < 0 \) - Here, \( [2x] \) will be negative or zero. - Thus, \( f([2x]) = 1 \). #### Case 2: \( 0 \leq x < \frac{1}{2} \) - Here, \( 2x \) will be in the range \( [0, 1) \), so \( [2x] = 0 \). - Thus, \( f([2x]) = f(0) = \frac{1 - 0}{1 + 0} = 1 \). #### Case 3: \( \frac{1}{2} \leq x < 1 \) - Here, \( 2x \) will be in the range \( [1, 2) \), so \( [2x] = 1 \). - Thus, \( f([2x]) = f(1) = \frac{1 - 1}{1 + 1} = 0 \). #### Case 4: \( 1 \leq x < \frac{3}{2} \) - Here, \( 2x \) will be in the range \( [2, 3) \), so \( [2x] = 2 \). - Thus, \( f([2x]) = f(2) = \frac{1 - 2}{1 + 2} = \frac{-1}{3} \). ### Step 3: Summary of Results - For \( x < 0 \): \( f([\cdot]) = 1 \) - For \( 0 \leq x < \frac{1}{2} \): \( f([\cdot]) = 1 \) - For \( \frac{1}{2} \leq x < 1 \): \( f([\cdot]) = 0 \) - For \( 1 \leq x < \frac{3}{2} \): \( f([\cdot]) = -\frac{1}{3} \) ### Conclusion The function \( f([\cdot]) \) is piecewise defined as follows: \[ f([\cdot]) = \begin{cases} 1 & \text{if } x < \frac{1}{2} \\ 0 & \text{if } \frac{1}{2} \leq x < 1 \\ -\frac{1}{3} & \text{if } 1 \leq x < \frac{3}{2} \end{cases} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

If f(x)=|x-1|.([x]=[-x]), then (where [.] represents greatest integer function)

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

If f(x)={{:((e^([2x]+2x+1)-1)/([2x]+2x+1),:,x ne 0),(1,":", x =0):} , then (where [.] represents the greatest integer function)

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

If f(x)={{:(e^(|x|+|x|-1)/(|x|+|x|),":",xne0),(-1,":",x=0):} (where [.] denotes the greatest integer integer function), then

f(x)=[x] and g(x)={{:(1",",x gt1),(2",", x le 1):} , (where [.] represents the greatest integer function). Then g(f(x)) is discontinuous at x = _______________

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

Draw the graph of f(x)=[tan^(-1)x]," where "[*]" represents the greatest integer function".