Home
Class 12
MATHS
Which of the following is true about...

Which of the following is true about
`Let f(x) ={{:((x-2)/(|x-2|)((x^(2)-1)/(x^(2)+1)),xne2),((3)/(5),x=2):}?`

A

f(X) is continuous at x=2

B

f(x) has removable discontinuity ata x=2.

C

f(x) has non-removable discontinuity at x=2 .

D

Discontiuity at x=2 can be removed by redefining the function at x=2.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \[ f(x) = \begin{cases} \frac{(x-2)}{|x-2|} \cdot \frac{(x^2-1)}{(x^2+1)}, & x \neq 2 \\ \frac{3}{5}, & x = 2 \end{cases} \] at \( x = 2 \), we need to check the following condition for continuity: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = f(2) \] ### Step 1: Calculate \( f(2) \) From the definition, when \( x = 2 \): \[ f(2) = \frac{3}{5} \] ### Step 2: Calculate \( \lim_{x \to 2^+} f(x) \) For \( x \to 2^+ \) (approaching 2 from the right), we have \( |x-2| = x-2 \). Therefore, \[ f(x) = \frac{(x-2)}{(x-2)} \cdot \frac{(x^2-1)}{(x^2+1)} = 1 \cdot \frac{(x^2-1)}{(x^2+1)} = \frac{x^2-1}{x^2+1} \] Now, we compute the limit: \[ \lim_{x \to 2^+} f(x) = \lim_{x \to 2} \frac{x^2-1}{x^2+1} = \frac{2^2-1}{2^2+1} = \frac{4-1}{4+1} = \frac{3}{5} \] ### Step 3: Calculate \( \lim_{x \to 2^-} f(x) \) For \( x \to 2^- \) (approaching 2 from the left), we have \( |x-2| = -(x-2) = 2-x \). Therefore, \[ f(x) = \frac{(x-2)}{-(x-2)} \cdot \frac{(x^2-1)}{(x^2+1)} = -1 \cdot \frac{(x^2-1)}{(x^2+1)} = -\frac{x^2-1}{x^2+1} \] Now, we compute the limit: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2} -\frac{x^2-1}{x^2+1} = -\frac{2^2-1}{2^2+1} = -\frac{4-1}{4+1} = -\frac{3}{5} \] ### Step 4: Compare the limits and \( f(2) \) Now we compare the limits and the function value at \( x = 2 \): - \( \lim_{x \to 2^+} f(x) = \frac{3}{5} \) - \( \lim_{x \to 2^-} f(x) = -\frac{3}{5} \) - \( f(2) = \frac{3}{5} \) Since \( \lim_{x \to 2^-} f(x) \neq \lim_{x \to 2^+} f(x) \), the function is not continuous at \( x = 2 \). ### Conclusion Thus, the function \( f(x) \) is discontinuous at \( x = 2 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={{:((2^((1)/(x))-1)/(2^((1)/(x))+1),":",xne0),(0,":,x=0):} , then f(x) is

Let f(x) = tan^(-1)(((x-2))/(x^(2)+2x+2)) ,then 26 f'(1) is

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

f(x) ={{:((x)/(2x^(2)+|x|),xne0),( 1, x=0):} then f(x) is

Solve each of the following equatins : ((2x-3)/(x-1))-4((x-1)/(2x-3))=3,xne1,(3)/(2)

Let f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f(x)), then

Let f(x)={{:(x^(n)sin(1//x^(2))","xne0),(0", "x=0):},(ninI). Then

Let f(x)=(x^2-x)/(x^2+2x) then d(f^(-1)x)/(dx) is equal to

Solve the following equation : 2((2x-1)/(x+3))-3((x+3)/(2x-1))=5,(xne-3,1)

Let f(x)={(1+|x-2|,x!=2),(2,x=2):} then at x=2, f(x) has