Home
Class 12
MATHS
The number of point f(x) ={{:([ cos pi...

The number of point `f(x) ={{:([ cos pix],0le x lt1),( |2x-3|[x-2],1lt xle2):}` is discontinuous at Is ([.] denotes the greatest intgreal function )

A

two

B

three

C

four

D

zero

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of points of discontinuity for the function \( f(x) \) defined as: \[ f(x) = \begin{cases} \lfloor \cos(\pi x) \rfloor & \text{for } 0 \leq x < 1 \\ |2x - 3| \lfloor x - 2 \rfloor & \text{for } 1 < x \leq 2 \end{cases} \] we will analyze the function at the critical points and intervals. ### Step 1: Analyze the function on the interval \( [0, 1) \) 1. **At \( x = 0 \)**: - \( f(0) = \lfloor \cos(0) \rfloor = \lfloor 1 \rfloor = 1 \) - **Right-hand limit** as \( x \to 0^+ \): - For \( 0 < x < 1 \), \( \cos(\pi x) \) is continuous and \( \cos(\pi x) \) decreases from 1 to 0. - Thus, \( \lfloor \cos(\pi x) \rfloor = 0 \) for \( x \) close to 1. - **Conclusion**: \( f(0) = 1 \) and \( \lim_{x \to 0^+} f(x) = 0 \) → Discontinuity at \( x = 0 \). ### Step 2: Analyze the function at \( x = \frac{1}{2} \) 2. **At \( x = \frac{1}{2} \)**: - \( f\left(\frac{1}{2}\right) = \lfloor \cos(\frac{\pi}{2}) \rfloor = \lfloor 0 \rfloor = 0 \) - **Right-hand limit** as \( x \to \frac{1}{2}^+ \): - For \( x \) just greater than \( \frac{1}{2} \), \( f(x) = \lfloor \cos(\pi x) \rfloor = -1 \) (as \( \cos(\pi x) < 0 \)). - **Conclusion**: \( f\left(\frac{1}{2}\right) = 0 \) and \( \lim_{x \to \frac{1}{2}^+} f(x) = -1 \) → Discontinuity at \( x = \frac{1}{2} \). ### Step 3: Analyze the function at \( x = 1 \) 3. **At \( x = 1 \)**: - \( f(1) = \lfloor \cos(\pi) \rfloor = \lfloor -1 \rfloor = -1 \) - **Right-hand limit** as \( x \to 1^+ \): - For \( x \) just greater than 1, we use the second piece of the function: \( f(x) = |2x - 3| \lfloor x - 2 \rfloor \). - At \( x = 1 \), \( \lfloor 1 - 2 \rfloor = -1 \) and \( |2(1) - 3| = 1 \) → \( f(1) = 1 \cdot (-1) = -1 \). - **Conclusion**: Both limits match → Continuous at \( x = 1 \). ### Step 4: Analyze the function at \( x = \frac{3}{2} \) 4. **At \( x = \frac{3}{2} \)**: - \( f\left(\frac{3}{2}\right) = |2(\frac{3}{2}) - 3| \lfloor \frac{3}{2} - 2 \rfloor = |0| \cdot (-1) = 0 \) - **Right-hand limit** as \( x \to \frac{3}{2}^+ \): - For \( x \) just greater than \( \frac{3}{2} \), \( f(x) = |2x - 3| \lfloor x - 2 \rfloor \) → \( f(x) = 0 \). - **Conclusion**: Both limits match → Continuous at \( x = \frac{3}{2} \). ### Step 5: Analyze the function at \( x = 2 \) 5. **At \( x = 2 \)**: - \( f(2) = |2(2) - 3| \lfloor 2 - 2 \rfloor = |1| \cdot 0 = 0 \) - **Left-hand limit** as \( x \to 2^- \): - For \( x \) just less than 2, \( f(x) = |2x - 3| \lfloor x - 2 \rfloor \) → \( f(x) = 1 \cdot (-1) = -1 \). - **Conclusion**: \( f(2) = 0 \) and \( \lim_{x \to 2^-} f(x) = -1 \) → Discontinuity at \( x = 2 \). ### Summary of Discontinuities The points of discontinuity are: - \( x = 0 \) - \( x = \frac{1}{2} \) - \( x = 2 \) Thus, the total number of points of discontinuity is **3**. ### Final Answer The number of points where \( f(x) \) is discontinuous is **3**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Discuss the continuity of f(x) in [0, 2], where f(x) = {{:([cos pi x]",",x le 1),(|2x - 3|[x - 2]",",x gt 1):} where [.] denotes the greatest integral function.

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

The number of points where f(x)= sgn (x^(2)-3x+2)+[x-3], x in [0,4], is discontinuous is (where [.] denotes the greatest integer function )_____.

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),( 2 cos pix + tan ^(-1)x ,,, 1 lt x le 2):} is differentiable in [0,2] then: ([.] denotes greatest integer function)

If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),( 2 cos pix + tan ^(-1)x ,,, 1 lt x le 2):} is differentiable in [0,2] then: ([.] denotes greatest integer function)

Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ [cos x],,, 0 le x le pi),( [sin x] -[cos x],,, pi lt x le 2pi):} where {.} denotes greatest integer function then. Number of points where f (x) is non-derivable :

If f(x)={|1-4x^2|,0lt=x<1 and [x^2-2x],1lt=x<2 where [.] denotes the greatest integer function, then

Let f(x) ={{:( [sin pi x],0le xle 1),( sgn (x-(5)/(4))xx{x-(2)/(3)},1lexle 2):} when [.] denotes the greatest integer function and {.} represents the fractional part function ,At what points should the continuity be checked ? Hence , find the points of discontinuity .

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then continutity and diffrentiability of f(x)