Home
Class 12
MATHS
Let f(x) be defined in the interval [...

Let f(x) be defined in the interval [0,4] such that
`f(x) ={{:(1-x,0lex le 1),( x+2, 1lt xlt2),( 4-x, 2 le x le 4):}` , then the number of points where f(x) is discontinuous is (a) 1 (b) 2 (c) 3 (d) none of these

A

1

B

2

C

3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of points where the function \( f(x) \) is discontinuous, we will analyze the piecewise function defined as follows: \[ f(x) = \begin{cases} 1 - x & \text{for } 0 \leq x \leq 1 \\ x + 2 & \text{for } 1 < x < 2 \\ 4 - x & \text{for } 2 \leq x \leq 4 \end{cases} \] ### Step 1: Identify the points of potential discontinuity The points where the function changes its definition are at \( x = 1 \) and \( x = 2 \). We will check the continuity at these points. ### Step 2: Check continuity at \( x = 1 \) 1. **Left-hand limit** as \( x \) approaches 1: \[ \lim_{x \to 1^-} f(x) = 1 - 1 = 0 \] 2. **Function value** at \( x = 1 \): \[ f(1) = 1 - 1 = 0 \] 3. **Right-hand limit** as \( x \) approaches 1: \[ \lim_{x \to 1^+} f(x) = 1 + 2 = 3 \] Since the left-hand limit \( (0) \) does not equal the right-hand limit \( (3) \), \( f(x) \) is discontinuous at \( x = 1 \). ### Step 3: Check continuity at \( x = 2 \) 1. **Left-hand limit** as \( x \) approaches 2: \[ \lim_{x \to 2^-} f(x) = 2 + 2 = 4 \] 2. **Function value** at \( x = 2 \): \[ f(2) = 4 - 2 = 2 \] 3. **Right-hand limit** as \( x \) approaches 2: \[ \lim_{x \to 2^+} f(x) = 4 - 2 = 2 \] Since the left-hand limit \( (4) \) does not equal the function value \( (2) \), \( f(x) \) is discontinuous at \( x = 2 \). ### Step 4: Check continuity at other points - For \( x = 0 \): \( f(0) = 1 - 0 = 1 \) (continuous) - For \( x = 4 \): \( f(4) = 4 - 4 = 0 \) (continuous) ### Conclusion The function \( f(x) \) is discontinuous at two points: \( x = 1 \) and \( x = 2 \). Thus, the number of points where \( f(x) \) is discontinuous is **2**. ### Final Answer (b) 2
Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x) ={{:(x+2 ,if xlt0),(-x^(2)-2 ,if 0le xlt1),( x ,if xge1):} then the number of points of discontinuity of |f(x)|is (a) 1 (b) 2 (c) 3 (d) none of these

A function f(x) is defined in the interval [1,4) as follows f(x)={{:(,log_(e)[x],1 le x lt 3),(,|log_(e)x|,3 le x lt 4):} . Then, the curve y=f(x)

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

f(x) {{:(-2"," if x le -1),(2x"," if -1lt x le 1),(2"," if x gt 1):}

Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):} The range of function g (x)= sin (7 (f (x)) is :

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

f (x) is an even periodic function with period 10 in [0,5], f (x) = {{:(2x, 0le x lt2),(3x ^(2)-8,2 le x lt 4),(10x, 4 le x le 5):}. Then: