Home
Class 12
MATHS
f(x) = lim(n rarr oo) ((x-1)^(2n) - 1)/(...

`f(x) = lim_(n rarr oo) ((x-1)^(2n) - 1)/((x-1)^(2n) + 1)` is discontinuous at (A) x=0 only (B) x=2 only (C) x=0 and 2 (D) none of these

A

x= 0 only

B

x=2 only

C

x= 0 and 2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function: \[ f(x) = \lim_{n \to \infty} \frac{(x-1)^{2n} - 1}{(x-1)^{2n} + 1} \] and determine where it is discontinuous, specifically at \(x = 0\) and \(x = 2\). ### Step 1: Evaluate \(f(0)\) Substituting \(x = 0\): \[ f(0) = \lim_{n \to \infty} \frac{(0-1)^{2n} - 1}{(0-1)^{2n} + 1} = \lim_{n \to \infty} \frac{(-1)^{2n} - 1}{(-1)^{2n} + 1} \] Since \((-1)^{2n} = 1\): \[ f(0) = \lim_{n \to \infty} \frac{1 - 1}{1 + 1} = \frac{0}{2} = 0 \] ### Step 2: Evaluate the right-hand limit as \(x \to 0^+\) For \(x\) approaching \(0\) from the right (\(x \to 0^+\)): \[ f(x) = \lim_{n \to \infty} \frac{(x-1)^{2n} - 1}{(x-1)^{2n} + 1} \] Here, \(x - 1 < 0\) (since \(x < 1\)), thus \((x-1)^{2n} \to 1\) as \(n \to \infty\): \[ f(x) = \lim_{n \to \infty} \frac{(-1)^{2n} - 1}{(-1)^{2n} + 1} = \frac{1 - 1}{1 + 1} = \frac{0}{2} = 0 \] ### Step 3: Evaluate the left-hand limit as \(x \to 0^-\) For \(x\) approaching \(0\) from the left (\(x \to 0^-\)): \[ f(x) = \lim_{n \to \infty} \frac{(x-1)^{2n} - 1}{(x-1)^{2n} + 1} \] Here, \(x - 1 < 0\) and \((x-1)^{2n} \to 1\) as \(n \to \infty\): \[ f(x) = \lim_{n \to \infty} \frac{(-1)^{2n} - 1}{(-1)^{2n} + 1} = \frac{1 - 1}{1 + 1} = \frac{0}{2} = 0 \] ### Step 4: Check for discontinuity at \(x = 0\) Since \(f(0) = 0\) and both the left-hand and right-hand limits as \(x \to 0\) are equal to \(0\), the function is continuous at \(x = 0\). ### Step 5: Evaluate \(f(2)\) Substituting \(x = 2\): \[ f(2) = \lim_{n \to \infty} \frac{(2-1)^{2n} - 1}{(2-1)^{2n} + 1} = \lim_{n \to \infty} \frac{1^{2n} - 1}{1^{2n} + 1} = \frac{1 - 1}{1 + 1} = \frac{0}{2} = 0 \] ### Step 6: Evaluate the right-hand limit as \(x \to 2^+\) For \(x\) approaching \(2\) from the right (\(x \to 2^+\)): \[ f(x) = \lim_{n \to \infty} \frac{(x-1)^{2n} - 1}{(x-1)^{2n} + 1} \] Here, \(x - 1 > 1\) (since \(x > 2\)), thus \((x-1)^{2n} \to \infty\): \[ f(x) = \lim_{n \to \infty} \frac{(x-1)^{2n}}{(x-1)^{2n}} = 1 \] ### Step 7: Check for discontinuity at \(x = 2\) Since \(f(2) = 0\) and the right-hand limit as \(x \to 2^+\) is \(1\), the function is discontinuous at \(x = 2\). ### Conclusion The function \(f(x)\) is discontinuous at \(x = 2\) but continuous at \(x = 0\). Therefore, the answer is: **(B) x = 2 only.**
Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(x rarr 0) ((1+x)^(n)-nx-1)/(x^(2)) n gt 1 is euqal to

lim_(x rarr 0)((5x^2+1)/(3x^2+1))^(1//x^2)

Find the values of a if f(x)=("lim")_(n rarr oo)(a x^(2n)+2)/(x^(2n)+a+1) is continuous at x=1.

Let f(x)=lim_(n rarr oo)(x^(2n-1)+ax^(2)+bx)/(x^(2n)+1). If f(x) is continuous for all x in R then find the values of a and b.

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

The function y= f(x) = lim_(n to oo) (x^(2n)-1)/(x^(2n)+1) . Is this function same as the function g(x) = "sgn"(|x|)-1) .

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

f(x)=(lim)_(n->oo)(sin(pix/2))^(2n) for x >0,x!=1 ,and f(1)=0. Discuss the continuity at x=1.

The number of terms in the expansion of (x+1/x+1)^n is (A) 2n (B) 2n+1 (C) 2n-1 (D) none of these